6,037 research outputs found
Spurious Eccentricities of Distorted Binary Components
I discuss the effect of physical distortion on the velocities of close binary
components and how we may use the resulting distortion of velocity curves to
constrain some properties of binary systems, such as inclination and mass
ratio. Precise new velocities for 5 Cet convincingly detect these distortions
with their theoretically predicted phase dependence. We can even use such
distortions of velocity curves to test Lucy's theory of convective gravity
darkening. The observed distortions for TT Hya and 5 Cet require the contact
components of those systems to be gravity darkened, probably somewhat more than
predicted by Lucy's theory but clearly not as much as expected for a radiative
star. These results imply there is no credible evidence for eccentric orbits in
binaries with contact components. I also present some speculative analyses of
the observed properties of a binary encased in a non-rotating common envelope,
if such an object could actually exist, and discuss how the limb darkening of
some recently calculated model atmospheres for giant stars may bias my resuts
for velocity-curve distortions, as well as other results from a wide range of
analyses of binary stars.Comment: 14 pp, 2 tables, 12 fig; under review by Ap
Nonmetallic Diaphragms for Instruments
This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors
Development and evaluation of a prototype global volcano surveillance system utilizing the ERTS-1 satellite data collection system
There are no author-identified significant results in this report
Recommended from our members
Building more accurate decision trees with the additive tree.
The expansion of machine learning to high-stakes application domains such as medicine, finance, and criminal justice, where making informed decisions requires clear understanding of the model, has increased the interest in interpretable machine learning. The widely used Classification and Regression Trees (CART) have played a major role in health sciences, due to their simple and intuitive explanation of predictions. Ensemble methods like gradient boosting can improve the accuracy of decision trees, but at the expense of the interpretability of the generated model. Additive models, such as those produced by gradient boosting, and full interaction models, such as CART, have been investigated largely in isolation. We show that these models exist along a spectrum, revealing previously unseen connections between these approaches. This paper introduces a rigorous formalization for the additive tree, an empirically validated learning technique for creating a single decision tree, and shows that this method can produce models equivalent to CART or gradient boosted stumps at the extremes by varying a single parameter. Although the additive tree is designed primarily to provide both the model interpretability and predictive performance needed for high-stakes applications like medicine, it also can produce decision trees represented by hybrid models between CART and boosted stumps that can outperform either of these approaches
Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing
Diamond's nitrogen vacancy (NV) center is an optically active defect with
long spin coherence times, showing great potential for both efficient nanoscale
magnetometry and quantum information processing schemes. Recently, both the
formation of buried 3D optical waveguides and high quality single NVs in
diamond were demonstrated using the versatile femtosecond laser-writing
technique. However, until now, combining these technologies has been an
outstanding challenge. In this work, we fabricate laser written photonic
waveguides in quantum grade diamond which are aligned to within micron
resolution to single laser-written NVs, enabling an integrated platform
providing deterministically positioned waveguide-coupled NVs. This fabrication
technology opens the way towards on-chip optical routing of single photons
between NVs and optically integrated spin-based sensing
Expert-Augmented Machine Learning
Machine Learning is proving invaluable across disciplines. However, its
success is often limited by the quality and quantity of available data, while
its adoption by the level of trust that models afford users. Human vs. machine
performance is commonly compared empirically to decide whether a certain task
should be performed by a computer or an expert. In reality, the optimal
learning strategy may involve combining the complementary strengths of man and
machine. Here we present Expert-Augmented Machine Learning (EAML), an automated
method that guides the extraction of expert knowledge and its integration into
machine-learned models. We use a large dataset of intensive care patient data
to predict mortality and show that we can extract expert knowledge using an
online platform, help reveal hidden confounders, improve generalizability on a
different population and learn using less data. EAML presents a novel framework
for high performance and dependable machine learning in critical applications
Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes
In this paper we study reaction and timing attacks against cryptosystems
based on sparse parity-check codes, which encompass low-density parity-check
(LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the
feasibility of these attacks is not strictly associated to the quasi-cyclic
(QC) structure of the code but is related to the intrinsically probabilistic
decoding of any sparse parity-check code. So, these attacks not only work
against QC codes, but can be generalized to broader classes of codes. We
provide a novel algorithm that, in the case of a QC code, allows recovering a
larger amount of information than that retrievable through existing attacks and
we use this algorithm to characterize new side-channel information leakages. We
devise a theoretical model for the decoder that describes and justifies our
results. Numerical simulations are provided that confirm the effectiveness of
our approach
An Optical Study of BG Geminorum: An Ellipsoidal Binary with an Unseen Primar Star
We describe optical photometric and spectroscopic observations of the bright
variable BG Geminorum. Optical photometry shows a pronounced ellipsoidal
variation of the K0 I secondary, with amplitudes of ~0.5 mag at VRI and a
period of 91.645 days. A deep primary eclipse is visible for wavelengths <
4400A; a shallower secondary eclipse is present at longer wavelengths. Eclipse
timings and the radial velocity curve of the K0 secondary star indicate an
interacting binary where a lobe-filling secondary, M_2 ~ 0.5 Msun, transfers
material into a extended disk around a massive primary, M_1 ~ 4.5 Msun. The
primary star is either an early B-type star or a black hole. If it did contain
a black hole, BG Gem would be the longest period black hole binary known by a
factor of 10, as well as the only eclipsing black hole binary system.Comment: 27 pages, includes 8 figures and 5 tables, accepted to A
Coping Strategies of Family Members of Hospitalized Psychiatric Patients
This exploratory research paper investigated the coping strategies of families of hospitalized psychiatric patients and identified their positive and negative coping strategies. In this paper, the coping strategies of 45 family members were examined using a descriptive, correlational, mixed method research approach. Guided by the Neuman Systems Model and using the Family Crisis Oriented Personal Evaluation Scales and semistructured interviews, this paper found that these family members used more emotion-focused coping strategies than problem-focused coping strategies. The common coping strategies used by family members were communicating with immediate family, acceptance of their situation, passive appraisal, avoidance, and spirituality. The family members also utilized resources and support systems, such as their immediate families, mental health care professionals, and their churches
- …