7,095 research outputs found

    Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI.

    Get PDF
    Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤28weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population

    Lipid Peroxidation and Antioxidant Consumption as Early Markers of Neurosurgery-Related Brain Injury in Children

    Get PDF
    BACKGROUND AND AIMS: Lipid peroxidation represents a marker of secondary brain injury both in traumatic and in non-traumatic conditions-as in major neurosurgical procedures-eventually leading to brain edema amplification and further brain damage. Malondialdehyde (MDA), a lipid peroxidation marker, and ascorbate, a marker of antioxidant status, can represent early indicators of this process within the cerebrospinal fluid (CSF). We hypothesized that changes in cerebral lipid peroxidation can be measured ex vivo following neurosurgery in children. METHODS: Thirty-six children (M:F = 19/17, median age 32.9 months; IQR 17.6-74.6) undergoing neurosurgery for brain tumor removal were admitted to the pediatric intensive care unit (PICU) in the postoperative period with an indwelling intraventricular catheter for intracranial pressure monitoring and CSF drainage. Plasma and CSF samples were obtained for serial measurement of MDA, ascorbate, and cytokines. RESULTS: An early brain-limited increase in lipid peroxidation was measured, with a significant increase from baseline of MDA in CSF (p = 0.007) but not in plasma. In parallel, ascorbate in CSF decreased (p = 0.05). Systemic inflammatory response following brain surgery was evidenced by plasma IL-6/IL-8 increase (p 0.0022 and 0.0106, respectively). No correlation was found between oxidative response and tumor site or histology (according to World Health Organization grading). Similarly, lipid peroxidation was unrelated to the length of surgery (mean 321 ± 73 min), or intraoperative blood loss (mean 20.9 ± 16.8% of preoperative volemia, 44% given hemotransfusions). Median PICU stay was 3.5 days (IQL range 2-5.5 d.), and postoperative ventilation need was 24 h (IQL range 20-61.5 h). The elevation in postoperative MDA in CSF compared with preoperative values correlated significantly with postoperative ventilation need (P = 0.05, r2 0168), while no difference in PICU stay was recorded. CONCLUSIONS: Our results indicate that lipid peroxidation increases consistently following brain surgery, and it is accompanied by a decrease in antioxidant defences; intraventricular catheterization offers a unique chance of oxidative process monitoring. Further studies are needed to evaluate whether monitoring post-neurosurgical oxidative stress in CSF is of prognostic utility

    Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    Get PDF
    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.Comment: 5 pages, 4 figure

    Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing

    Get PDF
    Diamond's nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing

    Learning from an Electronic Chart Testbed

    Get PDF
    Over the past five years, the Canadian Hydrographic Service’s Electronic Chart Testbed has provided insights into the way an electronic chart (EC) will handle chart data — and from this the appropriate form for the Hydrographic Office to provide and electronic chart database; it has stimulated suggestions about how the display should be designed; it has provided a practical model for use in planning IHO specifications — and followed on to test these by implementing them; and it has shared in giving mariners demonstrations of some of the eventual capabilities of ECDIS, so that they can start thinking about what they need from it. This paper describes planning the Testbed; lessons from early tests; initial ideas on electronic chart data and on display design; and the reactions from mariners who saw the Testbed among six electronic charts on board the Norwegian ship LANCE during the 1988 North Sea Project

    Generalized Plasmonic Modelling of the Effect of Refractive Index on Laser-Induced Periodic Nanostructures

    Get PDF
    Laser-induced periodic surface structures (LIPSS) have been studied theoretically employing generalized plasmonic modelling on several dielectric materials such as SiO2, Al2O3, ZnO, AlAs and diamond exposed to 800 nm wavelength multi-pulse femtosecond laser irradiation. The study of the optical properties of the materials during laser irradiation reveals a formation of a metallic like pseudo-material on the irradiated layer during excitation. A study of the grating periodicity of the nanostructures shows that the materials having a high refraction index allow LIPSS formation with a wide range of grating periodicities. Results also show High Spatial Frequency LIPSS formation with periodicities 3 to 8 times lower than the laser wavelength

    Evaluating strategies to improve HIV care outcomes in Kenya: a modelling study

    Get PDF
    Background With expanded access to antiretroviral therapy (ART) in sub-Saharan Africa, HIV mortality has decreased, yet life-years are still lost to AIDS. Strengthening of treatment programmes is a priority. We examined the state of an HIV care programme in Kenya and assessed interventions to improve the impact of ART programmes on population health. Methods We created an individual-based mathematical model to describe the HIV epidemic and the experiences of care among adults infected with HIV in Kenya. We calibrated the model to a longitudinal dataset from the Academic Model Providing Access To Healthcare (known as AMPATH) programme describing the routes into care, losses from care, and clinical outcomes. We simulated the cost and effect of interventions at different stages of HIV care, including improvements to diagnosis, linkage to care, retention and adherence of ART, immediate ART eligibility, and a universal test-and-treat strategy. Findings We estimate that, of people dying from AIDS between 2010 and 2030, most will have initiated treatment (61%), but many will never have been diagnosed (25%) or will have been diagnosed but never started ART (14%). Many interventions targeting a single stage of the health-care cascade were likely to be cost-effective, but any individual intervention averted only a small percentage of deaths because the effect is attenuated by other weaknesses in care. However, a combination of five interventions (including improved linkage, point-of-care CD4 testing, voluntary counselling and testing with point-of-care CD4, and outreach to improve retention in pre-ART care and on-ART) would have a much larger impact, averting 1·10 million disability-adjusted life-years (DALYs) and 25% of expected new infections and would probably be cost-effective (US571perDALYaverted).Thisstrategywouldimprovehealthmoreefficientlythanauniversaltestandtreatinterventioniftherewerenoaccompanyingimprovementstocare(571 per DALY averted). This strategy would improve health more efficiently than a universal test-and-treat intervention if there were no accompanying improvements to care (1760 per DALY averted). Interpretation When resources are limited, combinations of interventions to improve care should be prioritised over high-cost strategies such as universal test-and-treat strategy, especially if this is not accompanied by improvements to the care cascade. International guidance on ART should reflect alternative routes to programme strengthening and encourage country programmes to evaluate the costs and population-health impact in addition to the clinical benefits of immediate initiation

    Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases

    Full text link
    C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8) resulting from a solid state reaction occurring on heating. Based on the spectra we propose a connection pattern for the fullerene in poly(C60C8H8), where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal with green or blue light a photochemical reaction was observed leading to a similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd version: minor changes in wording, accepted version by journa

    Observations of the Hubble Deep Field with the Infrared Space Observatory. I. Data reduction, maps and sky coverage

    Get PDF
    We present deep imaging at 6.7 micron and 15 micron from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observation strategy and the data reduction. The observed source density appears to approach the CAM confusion limit at 15 micron, and fluctuations in the 6.7 micron sky background may be identifiable with similar spatial fluctuations in the HDF galaxy counts. ISO appears to be detecting comparable field galaxy populations to the HDF, and our data yields strong evidence that future IR missions (such as SIRTF, FIRST and WIRE) as well as SCUBA and millimetre arrays will easily detect field galaxies out to comparably high redshifts.Comment: 7 pages, LaTeX (using mn.sty), 9 figures included as GIFs. Gzipped Postscipt version available from http://artemis.ph.ic.ac.uk/hdf/papers/ps/. Further information on ISO-HDF project can be found at http://artemis.ph.ic.ac.uk/hdf

    Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

    Get PDF
    Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors. Deep convolutional neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of using augmentation at test time, in addition to training time, for achieving more robust predictions. We investigate how test-time augmentation can improve CNNs' performance for brain tumor segmentation. We used different underpinning network structures and augmented the image by 3D rotation, flipping, scaling and adding random noise at both training and test time. Experiments with BraTS 2018 training and validation set show that test-time augmentation helps to improve the brain tumor segmentation accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201
    corecore