33 research outputs found

    Genetic correlations of psychiatric traits with body composition and glycemic traits are sex- and age-dependent

    Get PDF
    Body composition is often altered in psychiatric disorders. Using genome-wide common genetic variation data, we calculate sex-specific genetic correlations amongst body fat %, fat mass, fat-free mass, physical activity, glycemic traits and 17 psychiatric traits (up to N = 217,568). Two patterns emerge: (1) anorexia nervosa, schizophrenia, obsessive-compulsive disorder, and education years are negatively genetically correlated with body fat % and fat-free mass, whereas (2) attention-deficit/hyperactivity disorder (ADHD), alcohol dependence, insomnia, and heavy smoking are positively correlated. Anorexia nervosa shows a stronger genetic correlation with body fat % in females, whereas education years is more strongly correlated with fat mass in males. Education years and ADHD show genetic overlap with childhood obesity. Mendelian randomization identifies schizophrenia, anorexia nervosa, and higher education as causal for decreased fat mass, with higher body fat % possibly being a causal risk factor for ADHD and heavy smoking. These results suggest new possibilities for targeted preventive strategies

    Genetic Influences on Eight Psychiatric Disorders Based on Family Data of 4 408 646 Full and Half-siblings, and Genetic Data of 333 748 Cases and Controls

    Get PDF
    Background. Most studies underline the contribution of heritable factors for psychiatric disorders. However, heritability estimates depend on the population under study, diagnostic instruments, and study designs that each has its inherent assumptions, strengths, and biases. We aim to test the homogeneity in heritability estimates between two powerful, and state of the art study designs for eight psychiatric disorders. Methods. We assessed heritability based on data of Swedish siblings (N = 4 408 646 full and maternal half-siblings), and based on summary data of eight samples with measured genotypes (N = 125 533 cases and 208 215 controls). All data were based on standard diagnostic criteria. Eight psychiatric disorders were studied: (1) alcohol dependence (AD), (2) anorexia nervosa, (3) attention deficit/hyperactivity disorder (ADHD), (4) autism spectrum disorder, (5) bipolar disorder, (6) major depressive disorder, (7) obsessive-compulsive disorder (OCD), and (8) schizophrenia. Results. Heritability estimates from sibling data varied from 0.30 for Major Depression to 0.80 for ADHD. The estimates based on the measured genotypes were lower, ranging from 0.10 for AD to 0.28 for OCD, but were significant, and correlated positively (0.19) with national sibling-based estimates. When removing OCD from the data the correlation increased to 0.50. Conclusions. Given the unique character of each study design, the convergent findings for these eight psychiatric conditions suggest that heritability estimates are robust across different methods. The findings also highlight large differences in genetic and environmental influences between psychiatric disorders, providing future directions for etiological psychiatric research

    Examination of the shared genetic basis of anorexia nervosa and obsessive–compulsive disorder

    Get PDF
    Anorexia nervosa (AN) and obsessive–compulsive disorder (OCD) are often comorbid and likely to share genetic risk factors. Hence, we examine their shared genetic background using a cross-disorder GWAS meta-analysis of 3495 AN cases, 2688 OCD cases, and 18,013 controls. We confirmed a high genetic correlation between AN and OCD (rg = 0.49 ± 0.13, p = 9.07 × 10−7) and a sizable SNP heritability (SNP h2 = 0.21 ± 0.02) for the cross-disorder phenotype. Although no individual loci reached genome-wide significance, the cross-disorder phenotype showed strong positive genetic correlations with other psychiatric phenotypes (e.g., rg = 0.36 with bipolar disorder and 0.34 with neuroticism) and negative genetic correlations with metabolic phenotypes (e.g., rg = −0.25 with body mass index and −0.20 with triglycerides). Follow-up analyses revealed that although AN and OCD overlap heavily in their shared risk with other psychiatric phenotypes, the relationship with metabolic and anthropometric traits is markedly stronger for AN than for OCD. We further tested whether shared genetic risk for AN/OCD was associated with particular tissue or cell-type gene expression patterns and found that the basal ganglia and medium spiny neurons were most enriched for AN–OCD risk, consistent with neurobiological findings for both disorders. Our results confirm and extend genetic epidemiological findings of shared risk between AN and OCD and suggest that larger GWASs are warranted

    Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease.

    Get PDF
    Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease

    Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa

    Get PDF
    Objective: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method: Following uniformquality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3, 495 anorexia nervosa cases and 10, 982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h2 SNP]), partitioned heritability, and genetic correlations (rg) between anorexia nervosa and 159 other phenotypes. Results: Results were obtained for 10, 641, 224 SNPs and insertion-deletion variants with minor allele frequencies.>1% and imputation quality scores >0.6. The h2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Conclusions: Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genomewide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology

    Associations Between Attention-Deficit/Hyperactivity Disorder and Various Eating Disorders : A Swedish Nationwide Population Study Using Multiple Genetically Informative Approaches

    No full text
    Background: Although attention-deficit/hyperactivity disorder (ADHD) and eating disorders (EDs) frequently co-occur, little is known about the shared etiology. In this study, we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs such as bulimia nervosa. Methods: We applied different genetically informative designs to register-based information of a Swedish nationwide population (N = 3,550,118). We first examined the familial coaggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores and ED symptoms, and between AN polygenic risk scores and ADHD symptoms, in a genotyped population-based sample (N = 13,472). Results: Increased risk of all types of EDs was found in individuals with ADHD (any ED: odds ratio [OR] = 3.97, 95% confidence interval [CI] = 3.81, 4.14; AN: OR = 2.68, 95% CI = 2.15, 2.86; other EDs: OR = 4.66, 95% CI = 4.47, 4.87; bulimia nervosa: OR = 5.01, 95% CI = 4.63, 5.41) and their relatives compared with individuals without ADHD and their relatives. The magnitude of the associations decreased as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with other EDs (.37, 95% CI = .31, .42) than with AN (.14, 95% CI = .05, .22). ADHD polygenic risk scores correlated positively with ED symptom measures overall and with the subscales Drive for Thinness and Body Dissatisfaction despite small effect sizes. Conclusions: We observed stronger genetic association with ADHD for non-AN EDs than for AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders

    Genomics of body fat percentage may contribute to sex bias in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) occurs nine times more often in females than in males. Although environmental factors likely play a role, the reasons for this imbalanced sex ratio remain unresolved. AN displays high genetic correlations with anthropometric and metabolic traits. Given sex differences in body composition, we investigated the possible metabolic underpinnings of female propensity for AN. We conducted sex-specific GWAS in a healthy and medication-free subsample of the UK Biobank (n = 155,961), identifying 77 genome-wide significant loci associated with body fat percentage (BF%) and 174 with fat-free mass (FFM). Partitioned heritability analysis showed an enrichment for central nervous tissue-associated genes for BF%, which was more prominent in females than males. Genetic correlations of BF% and FFM with the largest GWAS of AN by the Psychiatric Genomics Consortium were estimated to explore shared genomics. The genetic correlations of BF%male and BF%female with AN differed significantly from each other (p < .0001, ή = -0.17), suggesting that the female preponderance in AN may, in part, be explained by sex-specific anthropometric and metabolic genetic factors increasing liability to AN
    corecore