13 research outputs found

    A CFD and experimental investigation into a non-intrusive method for measuring cooling air mass flow rate through a synchronous generator

    Get PDF
    This paper presents a detailed methodology for a non-intrusive measurement of cooling air mass flow rate that enables an overall machine evaluation. This approach enables the simultaneous measurement of air mass flow with shaft torque at differing operating points, while minimising the change in air flow introduced by the measurement system. The impact of geometric parameters in the designed system are investigated using a detailed 180° CFD model. Special attention was paid to minimising their influence on pressure drop, mass flow rate through the machine and measurement uncertainty. Based on the results of this investigation, the system was designed and manufactured and the experimentally measured data was used to validate the CFD predictions. For the as optimal identified configuration, the flow rate is predicted to decrease by 2.2 % relative to unrestricted operation. The achieved measurement uncertainty is ±2.6 % at synchronous speed

    Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry

    Get PDF
    In this paper a typical small low voltage TEFC motor (output power ~10 kW) has been studied using computational fluid dynamics. The complexity of the end winding geometries, often consisting of several insulated copper strands bound together, provides a challenge to the modelling and analysis of heat transfer and fluid flow phenomena occurring in the end region which typically is an area of most interest for thermal management. Approximated geometries are usually employed in order to model the end windings to reduce analysis time and cost. This paper presents a comparison of two cases, a typical simplified geometry and a more realistic geometry of end windings and uses these cases to highlight the challenges and impact on predicted heat transfer. A comparison of the two models indicate that the different representations of end winding geometries can affect the heat dissipation rate through the outer housing by up to 45%

    CFD optimisation of the thermal design for a vented electrical machine

    Get PDF
    Optimisation algorithms hold the potential to dramatically reduce computational time whilst ensuring the optimal solution is found. Within this paper, the feasibility of using this novel approach on complex 3-D Computational Fluid Dynamics models, which are required for thermal management of electrical machines, is proven. A model of a simplified generator is parameterised with the aim of minimising the peak stator temperature by varying the axial location of a single stator vent. By generating a single parameterised case, and automating the optimisation, the simulations are run independently after initial setup, hence reducing both computational and user time. Locating a vent in the optimal position reduced the peak stator temperature by 9.4 K. A sensitivity study linking peak temperature to vent position has been carried out developing a polynomial relationship between them for the aforementioned geometry. Mass flow and pressure distribution in the vent have been analysed in detail

    Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry

    Get PDF
    Here, a typical small low-voltage totally enclosed fan-cooled (TEFC) motor (output power ∌10 kW) has been studied using computational fluid dynamics. The complexity of the end-winding geometries, often consisting of several insulated copper strands bound together, provides a challenge to the modelling and analysis of heat transfer and fluid flow phenomena occurring in the end region, which typically is an area of most interest for thermal management. Approximated geometries are usually employed in order to model the end windings to reduce the analysis time and cost. This paper presents a comparison of two cases, a typical simplified geometry and a more realistic geometry of end windings, and uses these cases to highlight the challenges and impact on predicted heat transfer. A comparison of the two models indicate that the different representations of end winding geometries can affect the heat dissipation rate through the outer housing by up to 45%

    Numerical investigations of convective phenomena of oil impingement on end-windings

    Get PDF
    A novel experimental rig for analysing intensive liquid cooling of highly power-dense electrical machine components has been developed. Coupled fluid flow and heat transfer has been modelled, using computational fluid dynamics (CFD), to inform the design of a purpose-built enclosure for optimising the design of submerged oil jet cooling approaches for electrical machine stators. The detailed modelling methodology presented in this work demonstrates the value in utilising CFD as a design tool for oil-cooled electrical machines. The predicted performance of the final test enclosure design is presented, as well as examples of the sensitivity studies which helped to develop the design. The sensitivity of jet flow on resulting heat transfer coefficients has been calculated, whilst ensuring parasitic pressure losses are minimised. The CFD modelling will be retrospectively validated using experimental measurements from the test enclosure

    Numerical investigations of convective phenomena of oil impingement on end-windings

    Get PDF
    A novel experimental rig for analysing intensive liquid cooling of highly power-dense electrical machine components has been developed. Coupled fluid flow and heat transfer have been modelled, using computational fluid dynamics (CFD), to inform the design of a purpose-built enclosure for optimising the design of submerged oil jet cooling approaches for electrical machine stators. The detailed modelling methodology presented in this work demonstrates the value in utilising CFD as a design tool for oil-cooled electrical machines. The predicted performance of the final test enclosure design is presented, as well as examples of the sensitivity studies which helped to develop the design. The sensitivity of jet flow on resulting heat transfer coefficients has been calculated, while ensuring parasitic pressure losses are minimised. The CFD modelling will be retrospectively validated using experimental measurements from the test enclosure

    A CFD and experimental investigation into a non-intrusive method for measuring cooling air mass flow rate through a synchronous generator

    Get PDF
    This paper presents a detailed methodology for a non-intrusive measurement of cooling air mass flow rate that enables an overall machine evaluation. This approach enables the simultaneous measurement of air mass flow with shaft torque at differing operating points, while minimising the change in air flow introduced by the measurement system. The impact of geometric parameters in the designed system are investigated using a detailed 180° CFD model. Special attention was paid to minimising their influence on pressure drop, mass flow rate through the machine and measurement uncertainty. Based on the results of this investigation, the system was designed and manufactured and the experimentally measured data was used to validate the CFD predictions. For the as optimal identified configuration, the flow rate is predicted to decrease by 2.2 % relative to unrestricted operation. The achieved measurement uncertainty is ±2.6 % at synchronous speed

    Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry

    Get PDF
    In this paper a typical small low voltage TEFC motor (output power ~10 kW) has been studied using computational fluid dynamics. The complexity of the end winding geometries, often consisting of several insulated copper strands bound together, provides a challenge to the modelling and analysis of heat transfer and fluid flow phenomena occurring in the end region which typically is an area of most interest for thermal management. Approximated geometries are usually employed in order to model the end windings to reduce analysis time and cost. This paper presents a comparison of two cases, a typical simplified geometry and a more realistic geometry of end windings and uses these cases to highlight the challenges and impact on predicted heat transfer. A comparison of the two models indicate that the different representations of end winding geometries can affect the heat dissipation rate through the outer housing by up to 45%

    Numerical investigations of convective phenomena of oil impingement on end-windings

    Get PDF
    A novel experimental rig for analysing intensive liquid cooling of highly power-dense electrical machine components has been developed. Coupled fluid flow and heat transfer has been modelled, using computational fluid dynamics (CFD), to inform the design of a purpose-built enclosure for optimising the design of submerged oil jet cooling approaches for electrical machine stators. The detailed modelling methodology presented in this work demonstrates the value in utilising CFD as a design tool for oil-cooled electrical machines. The predicted performance of the final test enclosure design is presented, as well as examples of the sensitivity studies which helped to develop the design. The sensitivity of jet flow on resulting heat transfer coefficients has been calculated, whilst ensuring parasitic pressure losses are minimised. The CFD modelling will be retrospectively validated using experimental measurements from the test enclosure
    corecore