478 research outputs found

    Research on the application of satellite remote sensing to local, state, regional, and national programs involved with resource management and environmental quality

    Get PDF
    Project summaries and project reports are presented in the area of satellite remote sensing as applied to local, regional, and national environmental programs. Projects reports include: (1) Douglas County applications program; (2) vegetation damage and heavy metal concentration in new lead belt; (3) evaluating reclamation of strip-mined land; (4) remote sensing applied to land use planning at Clinton Reservoir; and (5) detailed land use mapping in Kansas City, Kansas

    A native promoter–gene fusion created by CRISPR/Cas9-mediated genomic deletion offers a transgene-free method to drive oil accumulation in leaves

    Get PDF
    Achieving gain-of-function phenotypes without inserting foreign DNA is an important challenge for plant biotechnologists. Here we show that a gene can be brought under the control of a promoter from an upstream gene by deleting the intervening genomic sequence using dual-guide CRISPR/Cas9. We fuse the promoter of a non-essential photosynthesis-related gene to DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) in the lipase-deficient sugar-dependent 1 mutant of Arabidopsis thaliana to drive ectopic oil accumulation in leaves. DGAT2 expression is enhanced more than twenty-fold and the triacylglycerol content increases by around thirty-fold. This deletion strategy offers a transgene-free route to engineering traits that rely on transcriptional gain-of-function, such as producing high lipid forage to increase the productivity and sustainability of ruminant farming

    An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid β-oxidation

    Get PDF
    AbstractCharacterisation of the Arabidopsis dbr5 mutant, which was isolated on the basis of 2,4-dichlorophenoxybutyric acid (2,4-DB) resistance, revealed that it is disrupted in the CHY1 gene. CHY1 encodes a peroxisomal protein that is 43% identical to the mammalian β-hydroxyisobutryl-CoA hydrolase of valine catabolism. We show that 2,4-DB resistance and the associated sucrose dependent seedling growth are due to a large activity decrease of 3-ketoacyl-CoA thiolase, which is involved in peroxisomal fatty acid β-oxidation. 14C-feeding studies demonstrate that dbr5 and chy1 seedlings are reduced in valine catabolism. These data support the hypothesis that CHY1 plays a key role in peroxisomal valine catabolism and that disruption of this enzyme results in accumulation of a toxic intermediate, methacrylyl-CoA, that inhibits 3-ketoacyl-CoA thiolase activity and thus blocks peroxisomal β-oxidation. We also show that CHY1 is repressed in seedlings grown on sugars, which suggests that branched chain amino acid catabolism is transcriptionally regulated by nutritional status

    Universal Multifractality in Quantum Hall Systems with Long-Range Disorder Potential

    Full text link
    We investigate numerically the localization-delocalization transition in quantum Hall systems with long-range disorder potential with respect to multifractal properties. Wavefunctions at the transition energy are obtained within the framework of the generalized Chalker--Coddington network model. We determine the critical exponent Îą0\alpha_0 characterizing the scaling behavior of the local order parameter for systems with potential correlation length dd up to 1212 magnetic lengths ll. Our results show that Îą0\alpha_0 does not depend on the ratio d/ld/l. With increasing d/ld/l, effects due to classical percolation only cause an increase of the microscopic length scale, whereas the critical behavior on larger scales remains unchanged. This proves that systems with long-range disorder belong to the same universality class as those with short-range disorder.Comment: 4 pages, 2 figures, postsript, uuencoded, gz-compresse

    Highlights of recent progress in plant lipid research

    Get PDF
    Raw fossil material reserves are not inexhaustible and as prices continue to raise it is necessary to find new sources of alternative and renewable energy. Oils from oleaginous field crops (sunflower and rape) with properties close to those of fossil fuel could constitute an alternative source of energy for the production of raw materials. This is the context in which the 18th International Symposium on Plant lipids (ISPL) was held in Bordeaux from 20th to 25th July 2008 at “La Cité Mondiale”. The 18th ISPL gathered 270 researchers from 33 countries. Sixty nine oral communications and 136 posters were presented during the 12 sessions of the Symposium. The sessions have covered all the different aspects of the Plant Lipid field including: Surface lipids: suberin, cutin and waxes, Fatty acids, Glycerolipids, Plant lipids as renewable sources of energy, Seed oils and bioengineering of metabolic pathways, Lipid catabolism, Models for lipid studies: lower plants, micro-organisms and others, Modifications of proteins by lipids, Sphingolipids, sterols and isoprenoids, Lipid signaling and plant stress responses, Lipid trafficking and membrane dynamics, New methods and technologies: functional lipidomics, fluxome, modelling

    A causal inference and Bayesian optimisation framework for modelling multi-trait relationships—Proof-of-concept using Brassica napus seed yield under controlled conditions

    Get PDF
    The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment

    Production of human milk fat substitute by engineered strains of Yarrowia lipolytica.

    Get PDF
    Human milk fat has a distinctive stereoisomeric structure where palmitic acid is esterified to the middle (sn-2) position on the glycerol backbone of the triacylglycerol and unsaturated fatty acids to the outer (sn-1/3) positions. This configuration allows for more efficient nutrient absorption in the infant gut. However, the fat used in most infant formulas originates from plants, which exclude palmitic acid from the sn-2 position. Oleaginous yeasts provide an alternative source of lipids for human nutrition. However, these yeasts also exclude palmitic acid from the sn-2 position of their triacylglycerol. Here we show that Yarrowia lipolytica can be engineered to produce triacylglycerol with more than 60% of the palmitic acid in the sn-2 position, by expression of lysophosphatidic acid acyltransferases with palmitoyl-Coenzyme A specificity. The engineered Y. lipolytica strains can be cultured on glycerol, glucose, palm oil or a mixture of substrates, under nitrogen limited condition, to produce triacylglycerol with a fatty acid composition that resembles human milk fat, in terms of the major molecular species (palmitic, oleic and linoleic acids). Culture on palm oil or a mixture of glucose and palm oil produced the highest lipid titre and a triacylglycerol composition that is most similar with human milk fat. Our data show that an oleaginous yeast can be engineered to produce a human milk fat substitute (β-palmitate), that could be used as an ingredient in infant formulas

    Down‐regulation of key genes involved in carbon metabolism in Medicago truncatula results in increased lipid accumulation in vegetative tissue

    Get PDF
    Alfalfa (Medicago sativa L.), is the most widely grown perennial forage crop, which is a close relative of the model diploid legume Medicago truncatula. However, use of alfalfa lead to substantial greenhouse gas emissions and economic losses related to inefficiencies in rumen fermentation. The provision of supplemental lipids has been used as a strategy to mitigate these issues, but it is a costly approach. The ability to enhance lipid content within the vegetative tissues of alfalfa would therefore be very advantageous. As such, our aim was to assess and select gene candidates to increase total shoot lipid content in M. truncatula using a virus‐induced gene silencing (VIGS) approach. We targeted gene homologs of the SUGAR‐DEPENDANT 1 (SDP1), ADP‐GLUCOSE‐PYROPHOSPHORYLASE SMALL SUBUNIT 1 (APS1), TRIGALACTOSYLDIACYLGLYCEROL 5 (TGD5) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1) in M. truncatula for silencing. Reduced target transcript levels were confirmed and changes of shoot lipid content and fatty acid composition were measured. Silencing of SDP1, APS1 and PXA1 each resulted in significant increases in shoot total lipid content. Significantly increased proportions of α‐linolenic acid (18:3Δ9cis,12cis,15cis) were observed and stearic acid (18:0) levels significantly decreased in the total acyl lipids extracted from vegetative tissues of each of the M. truncatula silenced plants. In contrast, palmitic acid (16:0) levels were significantly decreased in only SDP1 and PXA1‐silenced plants. Genes of PXA1 and SDP1 would be ideal targets for mutation as a means of improving the quality of alfalfa for increasing feed efficiency and minimizing greenhouse gas emissions from livestock production in the future

    Diverting phenylpropanoid pathway flux from sinapine to produce industrially useful 4-vinyl derivatives of hydroxycinnamic acids in Brassicaceous oilseeds

    Get PDF
    Sinapine (sinapoylcholine) is an antinutritive phenolic compound that can account for up to 2% of seed weight in brassicaceous oilseed crops and reduces the suitability of their protein-rich seed meal for use as animal feed. Sinapine biosynthesis draws on hydroxycinnamic acid precursors produced by the phenylpropanoid pathway. The 4-vinyl derivatives of several hydroxycinnamic acids have industrial applications. For example, 4-vinyl phenol (4-hydroxystyrene) is a building block for a range of synthetic polymers applied in resins, inks, elastomers, and coatings. Here we have expressed a modified bacterial phenolic acid decarboxylase (PAD) in developing seed of Camelina sativa to redirect phenylpropanoid pathway flux from sinapine biosynthesis to the production of 4-vinyl phenols. PAD expression led to a ∟95% reduction in sinapine content in seeds of both glasshouse and field grown C. sativa and to an accumulation of 4-vinyl derivatives of hydroxycinnamic acids, primarily as glycosides. The most prevalent aglycone was 4-vinyl phenol, but 4-vinyl guaiacol, 6-hydroxy-4-vinyl guaiacol and 4-vinylsyringol (Canolol) were also detected. The molar quantity of 4-vinyl phenol glycosides was more than twice that of sinapine in wild type seeds. PAD expression was not associated with an adverse effect on seed yield, harvest index, seed morphology, storage oil content or germination in either glasshouse or field experiments. Our data show that expression of PAD in brassicaceous oilseeds can supress sinapine accumulation, diverting phenylpropanoid pathway flux into 4-vinyl phenol derivatives, thereby also providing a non-petrochemical source of this class of industrial chemicals

    Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme

    Get PDF
    Since the publication of the International Programme on Chemical Safety (IPCS) Harmonized Scheme for Mutagenicity Testing, there have been a number of publications addressing test strategies for mutagenicity. Safety assessments of substances with regard to genotoxicity are generally based on a combination of tests to assess effects on three major end points of genetic damage associated with human disease: gene mutation, clastogenicity and aneuploidy. It is now clear from the results of international collaborative studies and the large databases that are currently available for the assays evaluated that no single assay can detect all genotoxic substances. The World Health Organization therefore decided to update the IPCS Harmonized Scheme for Mutagenicity Testing as part of the IPCS project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals. The approach presented in this paper focuses on the identification of mutagens and genotoxic carcinogens. Selection of appropriate in vitro and in vivo tests as well as a strategy for germ cell testing are describe
    • …
    corecore