61 research outputs found

    Survey of childhood empyema in Asia: Implications for detecting the unmeasured burden of culture-negative bacterial disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parapneumonic empyema continues to be a disease of significant morbidity and mortality among children despite recent advances in medical management. To date, only a limited number of studies have assessed the burden of empyema in Asia.</p> <p>Methods</p> <p>We surveyed medical records of four representative large pediatric hospitals in China, Korea, Taiwan and Vietnam using <it>ICD</it>-10 diagnostic codes to identify children <16 years of age hospitalized with empyema or pleural effusion from 1995 to 2005. We also accessed microbiology records of cultured empyema and pleural effusion specimens to describe the trends in the epidemiology and microbiology of empyema.</p> <p>Results</p> <p>During the study period, we identified 1,379 children diagnosed with empyema or pleural effusion (China, n = 461; Korea, n = 134; Taiwan, n = 119; Vietnam, n = 665). Diagnoses of pleural effusion (n = 1,074) were 3.5 times more common than of empyema (n = 305), although the relative proportions of empyema and pleural effusion noted in hospital records varied widely between the four sites, most likely because of marked differences in coding practices. Although pleural effusions were reported more often than empyema, children with empyema were more likely to have a cultured pathogen. In addition, we found that median age and gender distribution of children with these conditions were similar across the four countries. Among 1,379 empyema and pleural effusion specimens, 401 (29%) were culture positive. <it>Staphylococcus aureus </it>(n = 126) was the most common organism isolated, followed by <it>Streptococcus pneumoniae </it>(n = 83), <it>Pseudomonas aeruginosa </it>(n = 37) and <it>Klebsiella </it>(n = 35) and <it>Acinetobacter </it>species (n = 34).</p> <p>Conclusion</p> <p>The age and gender distribution of empyema and pleural effusion in children in these countries are similar to the US and Western Europe. <it>S. pneumoniae </it>was the second leading bacterial cause of empyema and pleural effusion among Asian children. The high proportion of culture-negative specimens among patients with pleural effusion or empyema suggests that culture may not be a sufficiently sensitive diagnostic method to determine etiology in the majority of cases. Future prospective studies in different countries would benefit from standardized case definitions and coding practices for empyema. In addition, more sensitive diagnostic methods would improve detection of pathogens and could result in better prevention, treatment and outcomes of this severe disease.</p

    CXCR4 Mediated Chemotaxis Is Regulated by 5T4 Oncofetal Glycoprotein in Mouse Embryonic Cells

    Get PDF
    5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES) cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF). Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO) mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which directly facilitates the biological response to CXCL12. The regulation of CXCR4 surface expression by 5T4 molecules is a novel means to control responses to the chemokine CXCL12 for example during embryogenesis but can also be selected to advantage the spread of a 5T4 positive tumor from its primary site

    Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis

    Get PDF
    Bronchiectasis is a disease associated with chronic progressive and irreversible dilatation of the bronchi and is characterised by chronic infection and associated inflammation. The prevalence of bronchiectasis is age-related and there is some geographical variation in incidence, prevalence and clinical features. Most bronchiectasis is reported to be idiopathic however post-infectious aetiologies dominate across Asia especially secondary to tuberculosis. Most focus to date has been on the study of airway bacteria, both as colonisers and causes of exacerbations. Modern molecular technologies including next generation sequencing (NGS) have become invaluable tools to identify microorganisms directly from sputum and which are difficult to culture using traditional agar based methods. These have provided important insight into our understanding of emerging pathogens in the airways of people with bronchiectasis and the geographical differences that occur. The contribution of the lung microbiome, its ethnic variation, and subsequent roles in disease progression and response to therapy across geographic regions warrant further investigation. This review summarises the known geographical differences in the aetiology, epidemiology and microbiology of bronchiectasis. Further, we highlight the opportunities offered by emerging molecular technologies such as -omics to further dissect out important ethnic differences in the prognosis and management of bronchiectasis.NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Published versio
    corecore