23 research outputs found

    Cattle Grazing and Conservation of a Meadow-Dependent Amphibian Species in the Sierra Nevada

    Get PDF
    World-wide population declines have sharpened concern for amphibian conservation on working landscapes. Across the Sierra Nevada's national forest lands, where almost half of native amphibian species are considered at risk, permitted livestock grazing is a notably controversial agricultural activity. Cattle (Bos taurus) grazing is thought to degrade the quality, and thus reduce occupancy, of meadow breeding habitat for amphibian species of concern such as the endemic Yosemite toad (Anaxyrus [ = Bufo] canorus). However, there is currently little quantitative information correlating cattle grazing intensity, meadow breeding habitat quality, and toad use of meadow habitat. We surveyed biotic and abiotic factors influencing cattle utilization and toad occupancy across 24 Sierra Nevada meadows to establish these correlations and inform conservation planning efforts. We utilized both traditional regression models and Bayesian structural equation modeling to investigate potential drivers of meadow habitat use by cattle and Yosemite toads. Cattle use was negatively related to meadow wetness, while toad occupancy was positively related. In mid and late season (mid July–mid September) grazing periods, cattle selected for higher forage quality diets associated with vegetation in relatively drier meadows, whereas toads were more prevalent in wetter meadows. Because cattle and toads largely occupied divergent zones along the moisture gradient, the potential for indirect or direct negative effects is likely minimized via a partitioning of the meadow habitat. During the early season, when habitat use overlap was highest, overall low grazing levels resulted in no detectable impacts on toad occupancy. Bayesian structural equation analyses supported the hypothesis that meadow hydrology influenced toad meadow occupancy, while cattle grazing intensity did not. These findings suggest cattle production and amphibian conservation can be compatible goals within this working landscape

    Multiple ecosystem services in a working landscape.

    No full text

    Multiple ecosystem services in a working landscape.

    No full text
    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services-specifically agricultural production, biodiversity and habitat, and soil health-across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments

    Multiple ecosystem services in a working landscape

    No full text
    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services-specifically agricultural production, biodiversity and habitat, and soil health-across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments

    Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes

    No full text
    Contamination of surface waters with microbial pollutants from fecal sources is a significant human health issue. Identification of relative fecal inputs from the mosaic of potential sources common in rural watersheds is essential to effectively develop and deploy mitigation strategies. We conducted a cross-sectional longitudinal survey of fecal indicator bacteria (FIB) concentrations associated with extensive livestock grazing, recreation, and rural residences in three rural, mountainous watersheds in California, USA during critical summer flow conditions. Overall, we found that 86% to 87% of 77 stream sample sites across the study area were below contemporary Escherichia coli-based microbial water quality standards. FIB concentrations were lowest at recreation sites, followed closely by extensive livestock grazing sites. Elevated concentrations and exceedance of water quality standards were highest at sites associated with rural residences, and at intermittently flowing stream sites. Compared to national and state recommended E. coli-based water quality standards, antiquated rural regional policies based on fecal coliform concentrations overestimated potential fecal contamination by as much as four orders of magnitude in this landscape, hindering the identification of the most likely fecal sources and thus the efficient targeting of mitigation practices to address them

    Conceptual Model.

    No full text
    <p>Conceptual model of the multiple hypothesized factors influencing toad meadow occupancy in the High Sierra Ranger District, Sierra National Forest, California, USA. Ovals indicate latent variables, which are estimated by observable indicators, represented by boxes. Straight arrows represent direct effects of one variable on another and curved arrows represent correlations between variables.</p

    Toad and cattle meadow use.

    No full text
    <p>Toad occupancy and annual cattle utilization (percent herbaceous biomass use and fecal pat density) along a hydrologic gradient of meadows (n = 24) in the High Sierra Ranger District, Sierra National Forest, California, USA, during 2006 to 2008. Toad occupancy rate is calculated as proportion of surveys (three total; 2002/2003, 2007, and 2008) each meadow was occupied.</p

    Mid season bivariate analyses.

    No full text
    <p>Mid season (August) meadow scale cattle use and forage quality along a hydrologic gradient of meadows (n = 24) in the High Sierra Ranger District, Sierra National Forest, California, USA. Cattle use, as measured by mean early season herbaceous biomass use (panel A), and mean forage quality (crude protein, total phosphorus [TP], acid detergent fiber [ADF; greater ADF values indicate lower digestibility]; panels B–D) significantly declined with increasing meadow hydrologic rank (i.e., meadow wetness). Late season (September) data exhibited similar trends.</p
    corecore