534 research outputs found

    Child universes UV regularization?

    Get PDF
    It is argued that high energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling prevents these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which takes into account gravitational effects. Also child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular connection to the maximal curvature hypothesis are discussed.Comment: 6 pages, RevTex, discussion to the maximum curvature hypothesis adde

    Wormholes and Child Universes

    Full text link
    Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or "almost" solutions, "almost" because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example "almost" instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining "string like" effects from the wormholes associated with the child universes is discussed.Comment: Talk presented at the IWARA 2009 Conference, Maresias, Brazil, October 2009, accepted for publication in the proceedings, World Scientific format, 8 page

    Reheating predictions in single field inflation

    Full text link
    Reheating is a transition era after the end of inflation, during which the inflaton is converted into the particles that populate the Universe at later times. No direct cosmological observables are normally traceable to this period of reheating. Indirect bounds can however be derived. One possibility is to consider cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time. Depending upon the model, the duration and final temperature after reheating, as well as its equation of state, may be directly linked to inflationary observables. For single-field inflationary models, if we approximate reheating by a constant equation of state, one can derive relations between the reheating duration (or final temperature), its equation of state parameter, and the scalar power spectrum amplitude and spectral index. While this is a simple approximation, by restricting the equation of state to lie within a broad physically allowed range, one can in turn bracket an allowed range of nsn_s and rr for these models. The added constraints can help break degeneracies between inflation models that otherwise overlap in their predictions for nsn_s and rr.Comment: 32 pages, 15 figures. Revised in response to comments on the original version, and in preparation for submission for publication. More references and a new figure were adde

    Coupled Inflation and Brane Gases

    Get PDF
    We study an effective four-dimensional theory with an action with two scalar fields minimally coupled to gravity, and with a matter action which couples to the two scalar fields via an overall field-dependent coefficient in the action. Such a theory could arise from a dimensional reduction of supergravity coupled to a gas of branes winding the compactified dimensions. We show the existence of solutions corresponding to power-law inflation. The graceful exit from inflation can be obtained by postulating the decay of the branes, as would occur if the branes are unstable in the vacuum and stabilized at high densities by plasma effects. This construction provides an avenue for connecting string gas cosmology and the late-time universe.Comment: 11 page

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α′\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    Standard Model Parameters and the Cosmological Constant

    Get PDF
    Simple functional relations amongst standard model couplings, including gravitional, are conjectured. Possible implications for cosmology and future theory are discussed.Comment: submitted to Physical Review

    Origin of FRW cosmology in slow-roll inflation from noncompact Kaluza-Klein theory

    Full text link
    Using a recently introduced formalism we discuss slow-roll inflaton from Kaluza-Klein theory without the cylinder condition. In particular, some examples corresponding to polynomic and hyperbolic Ď•\phi-potentials are studied. We find that the evolution of the fifth coordinate should be determinant for both, the evolution of the early inflationary universe and the quantum fluctuations.Comment: (final version) to be published in EPJ

    Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    Full text link
    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum.Comment: 25 pages, 8 figures, revised version, accepted for publication in JCA

    T and S dualities and The cosmological evolution of the dilaton and the scale factors

    Get PDF
    Cosmologically stabilizing radion along with the dilaton is one of the major concerns of low energy string theory. One can hope that T and S dualities can provide a plausible answer. In this work we study the impact of S and T duality invariances on dilaton gravity. We have shown various instances where physically interesting models arise as a result of imposing the mentioned invariances. In particular S duality has a very privileged effect in that the dilaton equations partially decouple from the evolution of the scale factors. This makes it easy to understand the general rules for the stabilization of the dilaton. We also show that certain T duality invariant actions become S duality invariance compatible. That is they mimic S duality when extra dimensions stabilize.Comment: Corrected a misleading interpretation of the S duality transformation and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in time. So the new version is dealing with d=10 only. Added references and corrected some typos. Minor re-editing. Omitted a section for elaboration in a further study. Corrected further typo
    • …
    corecore