16 research outputs found

    Source, sea and sink—A holistic approach to understanding plastic pollution in the Southern Caribbean

    Get PDF
    Marine plastics are considered to be a major threat to the sustainable use of marine and coastal resources of the Caribbean, on which the region relies heavily for tourism and fishing. To date, little work has quantified plastics within the Caribbean marine environment or examined their potential sources. This study aimed to address this by holistically integrating marine (surface water, subsurface water and sediment) and terrestrial sampling and Lagrangian particle tracking to examine the potential origins, flows and quantities of plastics within the Southern Caribbean. Terrestrial litter and the microplastics identified in marine samples may arise from the maritime and tourism industries, both of which are major contributors to the economies of the Caribbean region. The San Blas islands, Panama had the highest abundance of microplastics at a depth of 25 m, and significantly greater quantities in surface water than recorded in the other countries. Modelling indicated the microplastics likely arose from mainland Panama, which has some of the highest levels of mismanaged waste. Antigua had among the lowest quantities of terrestrial and marine plastics, yet the greatest diversity of polymers. Modelling indicated the majority of the microplastics in Antiguan coastal surface were likely to have originated from the wider North Atlantic Ocean. Ocean currents influence the movements of plastics and thus the relative contributions arising from local and distant sources which become distributed within a country's territorial water. These transboundary movements can undermine local or national legislation aimed at reducing plastic pollution. While this study presents a snapshot of plastic pollution, it contributes towards the void of knowledge regarding marine plastic pollution in the Caribbean Sea and highlights the need for international and interdisciplinary collaborative research and solutions to plastic pollution

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10p

    No full text
    Contiguous finished sequence from highly duplicated pericentromeric regions of human chromosomes is needed if we are to understand the role of pericentromeric instability in disease, and in gene and karyotype evolution. Here, we have constructed a BAC contig spanning the transition from pericentromeric satellites to genes on the short arm of human chromosome 10, and used this to generate 1.4 Mb of finished genomic sequence. Combining RT-PCR, in silico gene prediction, and paralogy analysis, we can identify two domains within the sequence. The proximal 600 kb consists of satellite-rich pericentromerically duplicated DNA which is transcript poor, containing only three unspliced transcripts. In contrast, the distal 850 kb contains four known genes (ZNF248, ZNF25, ZNF33A, and ZNF37A) and up to 32 additional transcripts of unknown function. This distal region also contains seven out of the eight intrachromosomal duplications within the sequence, including the p arm copy of the 250-kb duplication which gave rise to ZNF33A and ZNF33B. By sequencing orthologs of the duplicated ZNF33 genes we have established that ZNF33A has diverged significantly at residues critical for DNA binding but ZNF33B has not, indicating that ZNF33B has remained constrained by selection for ancestral gene function. These results provide further evidence of gene formation within intrachromosomal duplications, but indicate that recent interchromosomal duplications at this centromere have involved transcriptionally inert, satellite rich DNA, which is likely to be heterochromatic. This suggests that any novel gene structures formed by these interchromosomal events would require relocation to a more open chromatin environment to be expressed

    DNA sequence and analysis of human chromosome 9.

    No full text
    Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6–8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection

    The DNA sequence and analysis of human chromosome 13

    No full text
    Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb

    The DNA sequence and analysis of human chromosome 6

    No full text

    The DNA sequence and biological annotation of human chromosome 1.

    No full text
    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome
    corecore