23 research outputs found

    Simulation Study of an LWFA-based Electron Injector for AWAKE Run 2

    Full text link
    The AWAKE experiment aims to demonstrate preservation of injected electron beam quality during acceleration in proton-driven plasma waves. The short bunch duration required to correctly load the wakefield is challenging to meet with the current electron injector system, given the space available to the beamline. An LWFA readily provides short-duration electron beams with sufficient charge from a compact design, and provides a scalable option for future electron acceleration experiments at AWAKE. Simulations of a shock-front injected LWFA demonstrate a 43 TW laser system would be sufficient to produce the required charge over a range of energies beyond 100 MeV. LWFA beams typically have high peak current and large divergence on exiting their native plasmas, and optimisation of bunch parameters before injection into the proton-driven wakefields is required. Compact beam transport solutions are discussed.Comment: Paper submitted to NIMA proceedings for the 3rd European Advanced Accelerator Concepts Workshop. 4 pages, 3 figures, 1 table Changes after revision: Figure 2: figures 2 and 3 of the previous version collated with plots of longitudinal electric field Line 45: E_0 = 96 GV/m Lines 147- 159: evaluation of beam loading made more accurate Lines 107 - 124: discussion of simulation geometry move

    Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    Get PDF
    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications

    Assessment of viral and non-viral gene transfer into adult rat brains using HSV-1, calcium phosphate and PEI-based methods

    Get PDF
    CNS gene transfer could provide new approaches to the modelling of neurodegenerative diseases and devising potential therapies. One such disorder is Parkinson’s disease (PD), in which dysfunction of several different metabolic processes has been implicated. Here we review the literature on gene transfer systems based on herpes simplex virus type 1 (HSV-1) and non-viral polyethyleneimine (PEI) and calcium phosphate nanoparticle methods. We also assess the usefulness of various CNS gene delivery methods and present some of our own data to exemplify such usefulness. Our data result from vectors stereotaxically introduced to the substantia nigra (SN) of adult rats and evaluated 1 week and/or 1 month post injection using histochemical methods to assess recombinant ß-galactosidase enzyme activity. Gene transfer using PEI or calcium phosphate-mediated transfections was observed for both methods and PEI was comparable to that of HSV-1 amplicon. Our data show that the amplicon delivery was markedly increased when packaged with a helper virus and was similar to the expression profile achieved with a full-size replication-defective HSV-1 recombinant (8117/43). We also examine whether PEI or HSV-1 amplicon-mediated gene transfer could facilitate assessment of the biological effects induced by a dominant negative FGF receptor-1 mutant to model the reduced FGF signalling thought to occur in Parkinson’s disease

    The short-term survival of dissected living larvae is not affected by ORMOSIL nanoparticles.

    No full text
    <p>Dissected living larvae were treated with <sup>R</sup>ORM (1 mg/ml and 0.2 mg/ml are shown) or buffer and larval survival was quantified by evaluating the twitching phenotype. We assigned “survival” values or survival points according to the extent of twitching observed when the larva was stimulated with a forceps. As described in the text, the more the larva twitched, the higher the “survival” value, indicating that the dissected larva was alive <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029424#pone.0029424-Gunawardena3" target="_blank">[43]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029424#pone.0029424-Gunawardena4" target="_blank">[44]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029424#pone.0029424-Hurd1" target="_blank">[45]</a>. The extent of twitching was recorded every 15 minutes for a total of 60 minutes. No significant difference was seen between the survival of ORMOSIL treated or buffer treated dissected living larvae.</p

    Physiochemical properties of ORMOSIL nanoparticles.

    No full text
    <p>(<b>A</b>) The absorption and emission spectra for rhodamine-ORMOSIL (<sup>R</sup>ORM) particles. The typical emission band of rhodamine is λ<sub>max</sub> 600 nm. (<b>B</b>) The ORMOSIL nanoparticle size distribution profile as measured by the dynamic light scattering (DLS) method indicates that the diameter of ORMOSIL nanoparticles are on average 20 nm. (C) A transmission electron microscope (TEM) image of ORMOSIL nanoparticles. Bar = 100 nm.</p
    corecore