1,098 research outputs found

    Secondary emission conductivity of high purity silica fabric

    Get PDF
    High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test

    Materials and techniques for spacecraft static charge control

    Get PDF
    An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage

    Spatial patterns in the evolution of Cenozoic dynamic topography and its influence on the Antarctic continent

    Get PDF
    Our knowledge of dynamic topography in Antarctica remains in an infancy stage compared to other continents. We assess the space-time variability in dynamic topography in Antarctica by analysing grids of global dynamic topography in the Cenozoic (and late Cretaceous) based on the tomographic model S40RTS. Our model reveals that the Gamburtsev Province and Dronning Maud Land, two of the major nucleation sites for the East Antarctic Ice Sheet (EAIS) were ~500 m higher 60 Ma ago. The increased elevation may have facilitated ephemeral ice cap development in the early Cenozoic. Between ca 25 and 50 Ma the northern Wilkes Subglacial Basin was ca 200 m higher than today and a major increase in regional elevation (>600 m) occurred over the last 20-15 Ma over the northern and southern Victoria Land in the Transantarctic Mountains (TAM). The most prominent signal is observed over the Ross Sea Rift (RSR) where predicted Neogene dynamic topography exceeds 1,000 m. The flow of warm mantle from the West Antarctic Rift System (WARS)may have driven these dynamic topography effects over the TAM and RSR. However, we found that these effects are comparatively less significant over the Marie Byrd Land Dome and the interior of the WARS. If these contrasting dynamic topography effects are included, then the predicted elevations of the Ross Sea Embayment ca 20 Ma ago are more similar to the interior of the WARS, with significant implications for the early development of the West Antarctic Ice Sheet

    Bias in American Ornithologists' Union Bird Names

    Get PDF
    Ornithology has developed bodies to make collective decisions on the taxonomy, scientific names, and common names of birds. This tradition within ornithology assists with communication and reduces confusion. For North and Central America, a committee of the American Ornithologists' Union standardizes the taxonomy and nomenclature of all the birds that naturally occur within that area. This paper makes the point that this activity has been dominated by members from the United States, with insufficient attention paid to the appropriate use of the term "American" or to the concerns of citizens of countries other than the USA. As a result, the term "American" is used inappropriately as a synonym for North American in a geographic distribution sense. In addition, the terms "Canadian" and "Mexican" are used very sparingly or not at all in the English common name for species that occur in those countries. Suggestions are made with regards to the membership of the nomenclature committee and for remedying this problem with English common names

    Polaron and bipolaron dispersion curves in one dimension for intermediate coupling

    Full text link
    Bipolaron energies are calculated as a function of wave vector by a variational method of Gurari appropriate for weak or intermediate coupling strengths, for a model with electron-phonon interactions independent of phonon wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare electrons have a constant effective mass. A two-parameter trial function is taken for the relative motion of the two electrons in the bipolaron. Energies of bipolarons are compared with those of two single polarons as a function of wave vector for various parameter values. Results for effective masses at the zone center are also obtained. Comparison is made with data of other authors for bipolarons in the Hubbard-Holstein model, which differs mainly from the present model in that it has a tight-binding band structure for the bare electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe

    Klein-Gordon Equation for Quark Pairs in Color Superconductor

    Full text link
    The wave equation is derived for quark pairs in color superconductor in the regime of low density / strong coupling.Comment: 4 pages, no figure

    Prospectus, March 31, 1999

    Get PDF
    https://spark.parkland.edu/prospectus_1999/1010/thumbnail.jp

    The Atomic Limit of the Boson-Fermion Model

    Full text link
    The Boson-Fermion model, describing a mixture of hybridized localized Bosons and itinerant Fermions on a lattice, is known to exhibit spectral properties for the Fermions which upon lowering the temperature develop into a three pole structure in the vicinity of the Fermi level. These spectral features go hand in hand with the opening of a pseudogap in the density of states upon approaching the critical temperature Tc when superconductivity sets in. In the present work we study this model, in the atomic limit where the three pole structure arises naturally from the local bonding, anti-bonding and non-bonding states between the Bosons and Fermions.Comment: revtex, 9 pages and 6 eps figures. Submitted to Europhysics Letter

    Optical conductivity of polaronic charge carriers

    Full text link
    The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas at finite carrier density analytical approximations based on previous work on single-particle spectral functions are obtained. Particular emphasis is put on deviations from weak-coupling, small-polaron or one-electron theories occurring at intermediate coupling and/or finite carrier density. The analytical results are in surprisingly good agreement with exact data, and exhibit the characteristic polaronic excitations observed in experiments on manganites.Comment: 23 pages, 11 figure
    corecore