835 research outputs found
Polaron and bipolaron dispersion curves in one dimension for intermediate coupling
Bipolaron energies are calculated as a function of wave vector by a
variational method of Gurari appropriate for weak or intermediate coupling
strengths, for a model with electron-phonon interactions independent of phonon
wave vectors and a short-ranged Coulomb repulsion. It is assumed that the bare
electrons have a constant effective mass. A two-parameter trial function is
taken for the relative motion of the two electrons in the bipolaron. Energies
of bipolarons are compared with those of two single polarons as a function of
wave vector for various parameter values. Results for effective masses at the
zone center are also obtained. Comparison is made with data of other authors
for bipolarons in the Hubbard-Holstein model, which differs mainly from the
present model in that it has a tight-binding band structure for the bare
electrons.Comment: 11 pages including six figures. Physical Review B, to be publishe
Resonating bipolarons
Electrons coupled to local lattice deformations end up in selftrapped
localized molecular states involving their binding into bipolarons when the
coupling is stronger than a certain critical value. Below that value they exist
as essentially itinerant electrons. We propose that the abrupt crossover
between the two regimes can be described by resonant pairing similar to the
Feshbach resonance in binary atomic collision processes. Given the
intrinsically local nature of the exchange of pairs of itinerant electrons and
localized bipolarons, we demonstrate the occurrence of such a resonance on a
finite-size cluster made out of metallic atoms surrounding a polaronic ligand
center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter
Optical conductivity of polaronic charge carriers
The optical conductivity of charge carriers coupled to quantum phonons is
studied in the framework of the one-dimensional spinless Holstein model. For
one electron, variational diagonalisation yields exact results in the
thermodynamic limit, whereas at finite carrier density analytical
approximations based on previous work on single-particle spectral functions are
obtained. Particular emphasis is put on deviations from weak-coupling,
small-polaron or one-electron theories occurring at intermediate coupling
and/or finite carrier density. The analytical results are in surprisingly good
agreement with exact data, and exhibit the characteristic polaronic excitations
observed in experiments on manganites.Comment: 23 pages, 11 figure
Many-body large polaron optical conductivity in SrTiNbO
Recent experimental data on the optical conductivity of niobium doped
SrTiO are interpreted in terms of a gas of large polarons with effective
coupling constant . The {theoretical approach takes into
account} many-body effects, the electron-phonon interaction with multiple
LO-phonon branches, and the degeneracy and the anisotropy of the Ti t
conduction band. {Based on the Fr\"{o}hlich interaction, the many-body
large-polaron theory} provides an interpretation for the essential
characteristics, except -- interestingly -- for the unexpectedly large
intensity of a peak at meV, of the observed optical conductivity
spectra of SrTiNbO \textit{without} any adjustment of
material parameters.Comment: to appear in Phys. Rev.
- …
