55 research outputs found

    Exploring protocol bias in airway microbiome studies: one versus two PCR steps and 16S rRNA gene region V3 V4 versus V4

    Get PDF
    Background Studies on the airway microbiome have been performed using a wide range of laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. We sought to determine the impact of number of polymerase chain reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) on the presentation of the upper and lower airway microbiome. Our analyses included lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). Samples included oral wash, protected specimen brushes and protected bronchoalveolar lavage (healthy and obstructive lung disease), and negative controls. Results The number of sequences and amplicon sequence variants (ASV) decreased in order setup1 > setup2 > setup3. This trend appeared to be associated with an increased taxonomic resolution when sequencing the V3 V4 region (setup 1) and an increased number of small ASVs in setups 1 and 2. The latter was considered a result of contamination in the two-step PCR protocols as well as sequencing across multiple runs (setup 1). Although genera Streptococcus, Prevotella, Veillonella and Rothia dominated, differences in relative abundance were observed across all setups. Analyses of beta-diversity revealed that while oral wash samples (high biomass) clustered together regardless of number of PCR steps, samples from the lungs (low biomass) separated. The removal of contaminants identified using the Decontam package in R, did not resolve differences in results between sequencing setups. Conclusions Differences in number of PCR steps will have an impact of final bacterial community descriptions, and more so for samples of low bacterial load. Our findings could not be explained by differences in contamination levels alone, and more research is needed to understand how variations in PCR-setups and reagents may be contributing to the observed protocol bias.publishedVersio

    Change in pulmonary diffusion capacity in a general population sample over 9 years

    Get PDF
    Rationale: Data on the change in diffusion capacity of the lung for carbon monoxide (DL_CO) over time are limited. We aimed to examine change in DL_CO (ΔDL_CO) over a 9-year period and its predictors. Methods: A Norwegian community sample comprising 1,152 subjects aged 18–73 years was examined in 1987 and 1988. Of the 1,109 subjects still alive, 830 (75%) were re-examined in 1996/97. DL_CO was measured with the single breath-holding technique. Covariables recorded at baseline included sex, age, height, weight, smoking status, pack years, occupational exposure, educational level, and spirometry. Generalized estimating equations analyses were performed to examine relations between ΔDL_CO and the covariables. Results: At baseline, mean [standard deviation (SD)] DL_CO was 10.8 (2.4) and 7.8 (1.6) mmol·min−1·kPa−1 in men and women, respectively. Mean (SD) ΔDLCO was −0.24 (1.31) mmol·min^−1·kPa^−1. ΔDL_CO was negatively related to baseline age, DL_CO, current smoking, and pack years, and positively related to forced expiratory volume in 1 second (FEV_1) and weight. Sex, occupational exposure, and educational level were not related to ΔDL_CO. Conclusions: In a community sample, more rapid decline in DL_CO during 9 years of observation time was related to higher age, baseline current smoking, more pack years, larger weight, and lower FEV_1.publishedVersio

    CT-defined emphysema in COPD patients and risk for change in desaturation status in 6-min walk test

    Get PDF
    Under embargo until: 2022-07-23Background Emphysema and exercise induced desaturation (EID) are both related to poorer COPD prognosis. More knowledge of associations between emphysema and desaturation is needed for more efficient disease management. Research question Is emphysema a risk factor for both new and repeated desaturation, and is emphysema of more or less importance than other known risk factors? Methods 283 COPD patients completed a 6-min walk test (6MWT) at baseline and one year later in the Bergen COPD cohort study 2006–2011. Degree of emphysema was assessed as percent of low attenuation areas (%LAA) under −950 Hounsfield units using high-resolution computed tomography at baseline. We performed multinomial logistic regression analysis, receiver operating curves (ROC) and area under the curve (AUC) estimations. Dominance analysis was used to rank emphysema and risk factors in terms of importance. Results A one percent increase in %LAA increases the relative risk (RR) of new desaturation by 10 % (RR 1.1 (95%CI 1.1, 1.2)) and for repeated desaturation by 20 % (RR 1.2 (95%CI 1.1, 1.3)). Compared with other important desaturation risk factors, %LAA ranked as number one in the dominance analysis, accounting for 50 % and 37 % of the predicted variance for new and repeated desaturators, respectively. FEV1% predicted accounted for 9 % and 24 %, and resting SpO2 accounted for 22 % and 21 % for new and repeated desaturation. Conclusion Emphysema increases the risk of developing and repeatedly experiencing EID. Emphysema seems to be a more important risk factor for desaturation than FEV1% predicted and resting saturation.acceptedVersio

    The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease

    Get PDF
    Background The lower airways microbiome and host immune response in chronic pulmonary diseases are incompletely understood. We aimed to investigate possible microbiome characteristics and key antimicrobial peptides and proteins in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Methods 12 IPF patients, 12 COPD patients and 12 healthy controls were sampled with oral wash (OW), protected bronchoalveolar lavage (PBAL) and right lung protected sterile brushings (rPSB). The antimicrobial peptides and proteins (AMPs), secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 & hBD-2), were measured in PBAL by enzyme linked immunosorbent assay (ELISA). The V3V4 region of the bacterial 16S rDNA gene was sequenced. Bioinformatic analyses were performed with QIIME 2. Results hBD-1 levels in PBAL for IPF were lower compared with COPD. The predominant phyla in IPF were Firmicutes, Bacteroides and Actinobacteria; Proteobacteria were among top three in COPD. Differential abundance analysis at genus level showed significant differences between study groups for less abundant, mostly oropharyngeal, microbes. Alpha diversity was lower in IPF in PBAL compared to COPD (p = 0.03) and controls (p = 0.01), as well as in rPSB compared to COPD (p = 0.02) and controls (p = 0.04). Phylogenetic beta diversity showed significantly more similarity for IPF compared with COPD and controls. There were no significant correlations between alpha diversity and AMPs. Conclusions IPF differed in microbial diversity from COPD and controls, accompanied by differences in antimicrobial peptides. Beta diversity similarity between OW and PBAL in IPF may indicate that microaspiration contributes to changes in its microbiome.publishedVersio

    Peak oxygen uptake and breathing pattern in COPD patients – a four-year longitudinal study

    Get PDF
    Background: Activities of daily living in patients with chronic obstructive pulmonary disease (COPD) are limited by exertional dyspnea and reduced exercise capacity. The aims of the study were to examine longitudinal changes in peak oxygen uptake (V̇O2peak), peak minute ventilation (V̇Epeak) and breathing pattern over four years in a group of COPD patients, and to examine potential explanatory variables of change. Methods: This longitudinal study included 63 COPD patients, aged 44-75 years, with a mean forced expiratory volume in one second (FEV1) at baseline of 51 % of predicted (SD = 14). The patients performed two cardiopulmonary exercise tests (CPETs) on treadmill 4.5 years apart. The relationship between changes in V̇ O2peak and V̇Epeak and possible explanatory variables, including dynamic lung volumes and inspiratory capacity (IC), were analysed by multivariate linear regression analysis. The breathing pattern in terms of the relationship between minute ventilation (V̇E) and tidal volume (VT) was described by a quadratic equation, VT = a + b∙V̇ E + c∙V̇E2, for each test. The VTmax was calculated from the individual quadratic relationships, and was the point where the first derivative of the quadratic equation was zero. The mean changes in the curve parameters (CPET2 minus CPET1) and VTmax were analysed by bivariate and multivariate linear regression analyses with age, sex, height, changes in weight, lung function, IC and inspiratory reserve volume as possible explanatory variables. Results: Significant reductions in V̇ O2peak (p < 0.001) and V̇ Epeak (p < 0.001) were related to a decrease in resting IC and in FEV1. Persistent smoking contributed to the reduction in V̇O2peak. The breathing pattern changed towards a lower VT at a given V̇ E and was related to the reduction in FEV1. Conclusion: Increasing static hyperinflation and increasing airway obstruction were related to a reduction in exercise capacity. The breathing pattern changed towards more shallow breathing, and was related to increasing airway obstruction.publishedVersio

    Repeated bronchoscopy in health and obstructive lung disease: is the airway microbiome stable?

    Get PDF
    Objective Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). Methods 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. Results A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. Conclusion The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.publishedVersio

    Sputum microbiota and inflammation at stable state and during exacerbations in a cohort of chronic obstructive pulmonary disease (COPD) patients

    Get PDF
    Background: Exacerbations of chronic obstructive pulmonary disease (COPD) are debilitating events and spur disease progression. Infectious causes are frequent; however, it is unknown to what extent exacerbations are caused by larger shifts in the airways’ microbiota. The aim of the current study was to analyse the changes in microbial composition between stable state and during exacerbations, and the corresponding immune response. Methods: The study sample included 36 COPD patients examined at stable state and exacerbation from the Bergen COPD Cohort and Exacerbations studies, and one patient who delivered sputum on 13 different occasions during the three-year study period. A physician examined the patients at all time points, and sputum induction was performed by stringent protocol. Only induced sputum samples were used in the current study, not spontaneously expectorated sputum. Sputum inflammatory markers (IL-6, IL-8, IL-18, IP-10, MIG, TNF-α) and antimicrobial peptides (AMPs, i.e. LL-37/hCAP-18, SLPI) were measured in supernatants, whereas target gene sequencing (16S rRNA) was performed on corresponding cell pellets. The microbiome bioinformatics platform QIIME2TM and the statistics environment R were applied for bioinformatics analyses. Results: Levels of IP-10, MIG, TNF-α and AMPs were significantly different between the two disease states. Of 36 sample pairs, 24 had significant differences in the 12 most abundant genera between disease states. The diversity was significantly different in several individuals, but not when data was analysed on a group level. The one patient case study showed longitudinal dynamics in microbiota unrelated to disease state. Conclusion: Changes in the sputum microbiota with changing COPD disease states are common, and are accompanied by changes in inflammatory markers. However, the changes are highly individual and heterogeneous events.publishedVersio

    Predictors of exacerbations in chronic obstructive pulmonary disease - results from the Bergen COPD Cohort Study

    Get PDF
    Background: COPD exacerbations accelerate disease progression. Aims To examine if COPD characteristics and systemic inflammatory markers predict the risk for acute COPD exacerbation (AECOPD) frequency and duration. Methods: 403 COPD patients, GOLD stage II-IV, aged 44–76 years were included in the Bergen COPD Cohort Study in 2006/07, and followed for 3 years. Examined baseline predictors were sex, age, body composition, smoking, AECOPD the last year, GOLD stage, Charlson comorbidity score (CCS), hypoxemia (PaO21 AECOPD last year before baseline [1.65 (1.24–2.21)], GOLD III [1.36 (1.07–1.74)], GOLD IV [2.90 (1.98–4.25)], chronic cough [1.64 (1.30–2.06)] and use of inhaled steroids [1.57 (1.21–2.05)]. For AECOPD duration more than three weeks, significant predictors after adjustment were: hypoxemia [0.60 (0.39–0.92)], years since inclusion [1.19 (1.03–1.37)], AECOPD severity; moderate [OR 1.58 (1.14–2.18)] and severe [2.34 (1.58–3.49)], season; winter [1.51 (1.08–2.12)], spring [1.45 (1.02–2.05)] and sTNF-R1 per SD increase [1.16 (1.00–1.35)]. Conclusion: Several COPD characteristics were independent predictors of both AECOPD frequency and duration.publishedVersio

    Factors associated with coronary heart disease in COPD patients and controls

    Get PDF
    Background: COPD and coronary heart disease (CHD) frequently co-occur, yet which COPD phenotypes are most prone to CHD is poorly understood. The aim of this study was to see whether COPD patients did have a true higher risk for CHD than subjects without COPD, and to examine a range of potential factors associated with CHD in COPD patients and controls. Methods: 347 COPD patients and 428 non-COPD controls, were invited for coronary computed tomography angiography (CCTA) and pulmonary CT. Arterial blood gas, bioelectrical impedance and lung function was measured, and a detailed medical history taken. The CCTA was evaluated for significant coronary stenosis and calcium score (CaSc), and emphysema defined as >10% of total area <-950 Hounsfield units. Results: 12.6% of the COPD patients and 5.7% of the controls had coronary stenosis (p100 compared to 31.6% of the controls (p100 was 1.68 (1.12–2.53) in COPD patients compared with controls. Examining the risk of significant stenosis and CaSc>100 among COPD patients, no variable was associated with significant stenosis, whereas male sex [OR 2.85 (1.56–5.21)], age [OR 3.74 (2.42–5.77)], statin use [OR 2.23 (1.23–4.50)] were associated with CaSc>100, after adjusting for body composition, pack-years, C-reactive protein, use of angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), diabetes, emphysema score, GOLD category, exacerbation frequency, eosinophilia, and hypoxemia. Conclusion: COPD patients were more likely to have CHD, but neither emphysema score, lung function, exacerbation frequency, nor hypoxemia predicted presence of either coronary stenosis or CaSc>100.publishedVersio
    • …
    corecore