16 research outputs found

    Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis.

    Get PDF
    Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA

    The mechanisms of inflammation in gout and pseudogout (CPP-induced arthritis).

    No full text
    Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps

    Interleukin-1beta activation during acute joint inflammation: a limited role for the NLRP3 inflammasome in vivo

    No full text
    Contains fulltext : 96025.pdf (publisher's version ) (Closed access

    Dual-energy computed-tomography-based discrimination between basic calcium phosphate and calcium pyrophosphate crystal deposition in vivo.

    Get PDF
    Dual-energy computed tomography (DECT) is being considered as a non-invasive diagnostic and characterization tool in calcium crystal-associated arthropathies. Our objective was to assess the potential of DECT in distinguishing between basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) crystal deposition in and around joints in vivo. A total of 13 patients with calcific periarthritis and 11 patients with crystal-proven CPPD were recruited prospectively to undergo DECT scans. Samples harvested from BCP and CPP calcification types were analyzed using Raman spectroscopy and validated against synthetic crystals. Regions of interest were placed in BCP and CPP calcifications, and the following DECT attenuation parameters were obtained: CT numbers (HU) at 80 and 140 kV, dual-energy index (DEI), electron density (Rho), and effective atomic number (Z <sub>eff</sub> ). These DECT attenuation parameters were compared and validated against crystal calibration phantoms at two known equal concentrations. Receiver operating characteristic (ROC) curves were plotted to determine the highest accuracy thresholds for DEI and Z <sub>eff</sub> . Raman spectroscopy enabled chemical fingerprinting of BCP and CPP crystals both in vitro and in vivo. DECT was able to distinguish between HA and CPP in crystal calibration phantoms at two known equal concentrations, most notably by DEI (200 mg/cm <sup>3</sup> : 0.037 ± 0 versus 0.034 ± 0, p = 0.008) and Z <sub>eff</sub> (200 mg /cm <sup>3</sup> : 9.4 ± 0 versus 9.3 ± 0, p = 0.01) analysis. Likewise, BCP calcifications had significantly higher DEI (0.041 ± 0.005 versus 0.034 ± 0.005, p = 0.008) and Z <sub>eff</sub> (9.5 ± 0.2 versus 9.3 ± 0.2, p = 0.03) than CPP crystal deposits with comparable CT numbers in patients. With an area under the ROC curve of 0.83 [best threshold value = 0.0 39, sensitivity = 90. 9% (81.8, 97. 7%), specificity = 64.6% (50.0, 64. 6%)], DEI was the best parameter in distinguishing between BCP and CPP crystal depositions. DECT can help distinguish between crystal-proven BCP and CPP calcification types in vivo and, thus, aid in the diagnosis of challenging clinical cases, and in the characterization of CPP and BCP crystal deposition occurring in osteoarthritis

    Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent toll-like receptors (TLRs) in a murine model of osteoarthritis.

    No full text
    OBJECTIVES: The aim of our study was to evaluate the role of cell-membrane expressed TLRs and the signaling molecule MyD88 in a murine model of OA induced by knee menisectomy (surgical partial removal of the medial meniscus [MNX]). METHODS: OA was induced in 8-10weeks old C57Bl/6 wild-type (WT) female (n=7) mice and in knockout (KO) TLR-1 (n=7), -2 (n=8), -4 (n=9) -6 (n=5), MyD88 (n=8) mice by medial menisectomy, using the sham-operated contralateral knee as a control. Cartilage destruction and synovial inflammation were evaluated by knee joint histology using the OARSI scoring method. Apoptotic chondrocytes and cartilage metabolism (collagen II synthesis and MMP-mediated aggrecan degradation) were analyzed using immunohistochemistry. RESULTS: Operated knees exhibited OA features at 8weeks post-surgery compared to sham-operated ones. In menisectomized TLR-1, -2, -4, and -6 deficient mice, cartilage lesions, synovial inflammation and cartilage metabolism were similar to that in operated WT mice. Accordingly, using the same approach, we found no significant protection in MyD88-deficient mice in terms of OA progression as compared to WT littermates. CONCLUSIONS: Deficiency of TLRs or their signalling molecule MyD88 did not impact on the severity of experimental OA. Our results demonstrate that MyD88-dependent TLRs are not involved in this murine OA model. Moreover, the dispensable role of MyD88, which is also an adaptor for IL-1 receptor signaling, suggests that IL-1 is not a key mediator in the development of OA. This latter hypothesis is strengthened by the lack of efficiency of IL-1β antagonist in the treatment of OA

    Basic calcium phosphate crystals induce monocyte/macrophage IL-1(beta) secretion through the NLRP3 inflammasome in vitro.

    No full text
    Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease

    Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice.

    No full text
    To determine the mechanisms involved in inflammatory responses to octacalcium phosphate (OCP) crystals in vivo. OCP crystal-induced inflammation was monitored using a peritoneal model of inflammation in mice with different deficiencies affecting interleukin-1 (IL-1) secretion (IL-1α(-/-) , IL-1β(-/-) , ASC(-/-) , and NLRP3(-/-) mice) or in mice pretreated with IL-1 inhibitors (anakinra [recombinant IL-1 receptor antagonist] and anti-IL-1β). The production of IL-1α, IL-1β, and myeloid-related protein 8 (MRP-8)-MRP-14 complex was determined by enzyme-linked immunosorbent assay. Peritoneal neutrophil recruitment and cell viability were determined by flow cytometry. Depletion of mast cells or resident macrophages was performed by pretreatment with compound 48/80 or clodronate liposomes, respectively. OCP crystals induced peritoneal inflammation, as demonstrated by neutrophil recruitment and up-modulation of IL-1α, IL-1β, and MRP-8-MRP-14 complex, to levels comparable with those induced by monosodium urate monohydrate crystals. This OCP crystal-induced inflammation was both IL-1α- and IL-1β-dependent, as shown by the inhibitory effects of anakinra and anti-IL-1β antibody treatment. Accordingly, OCP crystal stimulation resulted in milder inflammation in IL-1α(-/-) and IL-1β(-/-) mice. Interestingly, ASC(-/-) and NLRP3(-/-) mice did not show any alteration in their inflammation status in response to OCP crystals. Depletion of the resident macrophage population resulted in a significant decrease in crystal-induced neutrophil infiltration and proinflammatory cytokine production in vivo, whereas mast cell depletion had no effect. Finally, OCP crystals induced apoptosis/necrosis of peritoneal cells in vivo. These data indicate that macrophages, rather than mast cells, are important for initiating and driving OCP crystal-induced inflammation. Additionally, OCP crystals induce IL-1-dependent peritoneal inflammation without requiring the NLRP3 inflammasome
    corecore