57 research outputs found

    Peptide-MHC Cellular Microarray with Innovative Data Analysis System for Simultaneously Detecting Multiple CD4 T-Cell Responses

    Get PDF
    Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells.The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings

    MHC-based detection of antigen-specific CD8+ T cell responses

    Get PDF
    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of β€˜combinatorial encoding’ enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring

    Renal clearable catalytic gold nanoclusters for in vivo disease monitoring

    Get PDF
    Ultra-small gold nanoclusters (AuNCs) have emerged as agile probes for in vivo imaging, as they exhibit exceptional tumour accumulation and efficient renal clearance properties. However, their intrinsic catalytic activity, which can enable increased detection sensitivity, has yet to be explored for in vivo sensing. By exploiting the peroxidase-mimicking activity of AuNCs and the precise nanometer size filtration of the kidney, we designed multifunctional protease nanosensors that respond to disease microenvironments to produce a direct colorimetric urinary readout of disease state in less than 1 h. We monitored the catalytic activity of AuNCs in collected urine of a mouse model of colorectal cancer where tumour-bearing mice showed a 13-fold increase in colorimetric signal compared to healthy mice. Nanosensors were eliminated completely through hepatic and renal excretion within 4 weeks after injection with no evidence of toxicity. We envision that this modular approach will enable rapid detection of a diverse range of diseases by exploiting their specific enzymatic signatures

    Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene

    Get PDF
    TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43–related neurodegenerative diseases

    R5 Clade C SHIV Strains with Tier 1 or 2 Neutralization Sensitivity: Tools to Dissect Env Evolution and to Develop AIDS Vaccines in Primate Models

    Get PDF
    Background: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. Methodology/Principal Findings: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an β€œearly,” recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a β€œlate” form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to β€œlate” SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+^+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. Conclusions/Significance: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates

    Factors Affecting Intention to Receive and Self-Reported Receipt of 2009 Pandemic (H1N1) Vaccine in Hong Kong: A Longitudinal Study

    Get PDF
    Background: Vaccination was a core component for mitigating the 2009 influenza pandemic (pH1N1). However, a vaccination program's efficacy largely depends on population compliance. We examined general population decision-making for pH1N1 vaccination using a modified Theory of Planned Behaviour (TBP). Methodology: We conducted a longitudinal study, collecting data before and after the introduction of pH1N1 vaccine in Hong Kong. Structural equation modeling (SEM) tested if a modified TPB had explanatory utility for vaccine uptake among adults. Principal Findings: Among 896 subjects who completed both the baseline and the follow-up surveys, 7% (67/896) reported being "likely/very likely/certain" to be vaccinated (intent) but two months later only 0.8% (7/896) reported having received pH1N1 vaccination. Perception of low risk from pH1N1 (60%) and concerns regarding adverse effects of the vaccine (37%) were primary justifications for avoiding pH1N1 vaccination. Greater perceived vaccine benefits (Ξ² = 0.15), less concerns regarding vaccine side-effects (Ξ² = -0.20), greater adherence to social norms of vaccination (Ξ² = 0.39), anticipated higher regret if not vaccinated (Ξ² = 0.47), perceived higher self-efficacy for vaccination (Ξ² = 0.12) and history of seasonal influenza vaccination (Ξ² = 0.12) were associated with higher intention to receive the pH1N1 vaccine, which in turn predicted self-reported vaccination uptake (Ξ² = 0.30). Social norm (Ξ² = 0.70), anticipated regret (Ξ² = 0.19) and vaccination intention (Ξ² = 0.31) were positively associated with, and accounted for 70% of variance in vaccination planning, which, in turn subsequently predicted self-reported vaccination uptake (Ξ² = 0.36) accounting for 36% of variance in reported vaccination behaviour. Conclusions/Significance: Perceived low risk from pH1N1 and perceived high risk from pH1N1 vaccine inhibited pH1N1 vaccine uptake. Both the TPB and the additional components contributed to intended vaccination uptake but social norms and anticipated regret predominantly associated with vaccination intention and planning. Vaccination planning is a more significant proximal determinant of uptake of pH1N1 vaccine than is intention. Intention alone is an unreliable predictor of future vaccine uptake. Β© 2011 Liao et al.published_or_final_versio

    High Viral Fitness during Acute HIV-1 Infection

    Get PDF
    Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection

    Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape

    Get PDF
    Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∢20 to 1∢50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one

    Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

    Get PDF
    Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response
    • …
    corecore