112 research outputs found

    Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity

    Get PDF
    In patients with cancer, the wasting syndrome, cachexia, is associated with caloric deficiency. Here, we describe tumor-induced alterations of the host metabolic response to caloric deficiency that cause intratumoral immune suppression. In pre-cachectic mice with transplanted colorectal cancer or autochthonous pancreatic ductal adenocarcinoma (PDA), we find that IL-6 reduces the hepatic ketogenic potential through suppression of PPARalpha, the transcriptional master regulator of ketogenesis. When these mice are challenged with caloric deficiency, the resulting relative hypoketonemia triggers a marked rise in glucocorticoid levels. Multiple intratumoral immune pathways are suppressed by this hormonal stress response. Moreover, administering corticosterone to elevate plasma corticosterone to a level that is lower than that occurring in cachectic mice abolishes the response of mouse PDA to an immunotherapy that has advanced to clinical trials. Therefore, tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.We also thank the University of Cambridge, Cancer Research UK, the CRUK Cambridge Institute Core Facilities, and Hutchison Whampoa Limited. This work was also supported by the Lustgarten Foundation for Pancreatic Cancer Research, the Ludwig Institute for Cancer Research, the NIHR Biomedical Research Centre, and the Cambridge ECMC. T.R.F. was supported by the Rosetrees Trust and the Cambridge School of Clinical Medicine’s MB/PhD Programme, T.J. was supported by the Wellcome Trust Translational Medicine and Therapeutics Programme and the University of Cambridge Department of Oncology (RJAG/076), C.M.C. was supported by the Cambridge University Hospitals NHS Foundation Trust, E.W.R. was supported by the CRI Irvington Postdoctoral Fellowship Program, and A.P.C. was supported by the Medical Research Council (MRC) Metabolic Diseases Unit (MRC_MC_UU_12012/1). D.T.F. is a Distinguished Scholar of the Lustgarten Foundation

    Whole Genome Sequencing Highlights Genetic Changes Associated with Laboratory Domestication of C. elegans

    Get PDF
    Defining the mutational landscape when individuals of a species grow separately and diverge over many generations can provide insights into trait evolution. A specific example of this involves studying changes associated with domestication where different lines of the same wild stock have been cultivated independently in different standard environments. Whole genome sequence comparison of such lines permits estimation of mutation rates, inference of genes' ancestral states and ancestry of existing strains, and correction of sequencing errors in genome databases. Here we study domestication of the C. elegans Bristol strain as a model, and report the genome sequence of LSJ1 (Bristol), a sibling of the standard C. elegans reference wild type N2 (Bristol). The LSJ1 and N2 lines were cultivated separately from shortly after the Bristol strain was isolated until methods to freeze C. elegans were developed. We find that during this time the two strains have accumulated 1208 genetic differences. We describe phenotypic variation between N2 and LSJ1 in the rate at which embryos develop, the rate of production of eggs, the maturity of eggs at laying, and feeding behavior, all the result of post-isolation changes. We infer the ancestral alleles in the original Bristol isolate and highlight 2038 likely sequencing errors in the original N2 reference genome sequence. Many of these changes modify genome annotation. Our study provides a starting point to further investigate genotype-phenotype association and offers insights into the process of selection as a result of laboratory domestication

    Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery

    Get PDF
    Abstract Background Atherosclerosis, the underlying cause of cardiovascular disease, results from both genetic and environmental factors. Methods In the current study we take a systems-based approach using weighted gene co-expression analysis to identify a candidate pathway of genes related to atherosclerosis. Bioinformatic analyses are performed to identify candidate genes and interactions and several novel genes are characterized using in-vitro studies. Results We identify 1 coexpression module associated with innominate artery atherosclerosis that is also enriched for inflammatory and macrophage gene signatures. Using a series of bioinformatics analysis, we further prioritize the genes in this pathway and identify Cd44 as a critical mediator of the atherosclerosis. We validate our predictions generated by the network analysis using Cd44 knockout mice. Conclusion These results indicate that alterations in Cd44 expression mediate inflammation through a complex transcriptional network involving a number of previously uncharacterized genes

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link
    • …
    corecore