9 research outputs found

    Broad Antibody Mediated Cross-Neutralization and Preclinical Immunogenicity of New Codon-Optimized HIV-1 Clade CRF02_AG and G Primary Isolates

    Get PDF
    Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary “street strain” isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA) to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G). Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G) and consensus tat (CRF02_AG and G) antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G

    The carbomer-lecithin adjuvant adjuplex has potent immunoactivating properties and elicits protective adaptive immunity against influenza virus challenge in mice

    Get PDF
    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-ÎşB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines

    Biosynthesis and PBAN-regulated transport of pheromone polyenes in the winter moth, Operophtera brumata.

    No full text
    The trienoic and tetraenoic polyenes, (3Z,6Z,9Z)-3,6,9-nonadecatriene, (3Z,6Z,9Z)-3,6,9-henicosatriene, and (3Z,6Z,9Z)-1,3,6,9-henicosatetraene were found in the abdominal cuticle and pheromone gland of the winter moth Operophtera brumata L. (Lepidoptera: Geometridae), in addition to the previously identified single component sex pheromone (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene. The pheromone biosynthesis activating neuropeptide (PBAN) is involved in the regulation of polyene transport from abdominal cuticle to the pheromone gland. In vivo deuterium labeling experiments showed that (11Z,14Z,17Z)-11,14,17-icosatrienoic acid, the malonate elongation product of linolenic acid, (9Z,12Z,15Z)-9,12,15-octadecatrienoic acid, is used to produce (3Z,6Z,9Z)-3,6,9-nonadecatriene and (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene

    The protective role of immunoglobulins in fungal infections and inflammation

    Get PDF
    International audienceIncreased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg

    The protective role of immunoglobulins in fungal infections and inflammation

    No full text
    corecore