240 research outputs found

    Neutrino Mass and Oscillation

    Get PDF
    The question of neutrino mass is one of the major riddles in particle physics. Recently, strong evidence that neutrinos have nonzero masses has been found. While tiny, these masses could be large enough to contribute significantly to the mass density of the universe. The evidence for nonvanishing neutrino masses is based on the apparent observation of neutrino oscillation -- the transformation of a neutrino of one type or "flavor" into one of another. We explain the physics of neutrino oscillation, and review and weigh the evidence that it actually occurs in nature. We also discuss the constraints on neutrino mass from cosmology and from experiments with negative results. After presenting illustrative neutrino mass spectra suggested by the present data, we consider how near- and far-future experiments can further illuminate the nature of neutrinos and their masses.Comment: 43 pages, 8 figures, to appear in the Annual Review of Nuclear and Particle Science, Vol. 49 (1999

    Identification of novel SNPs of ABCD1, ABCD2, ABCD3, and ABCD4 genes in patients with X-linked adrenoleukodystrophy (ALD) based on comprehensive resequencing and association studies with ALD phenotypes

    Get PDF
    Adrenoleukodystrophy (ALD) is an X-linked disorder affecting primarily the white matter of the central nervous system occasionally accompanied by adrenal insufficiency. Despite the discovery of the causative gene, ABCD1, no clear genotype–phenotype correlations have been established. Association studies based on single nucleotide polymorphisms (SNPs) identified by comprehensive resequencing of genes related to ABCD1 may reveal genes modifying ALD phenotypes. We analyzed 40 Japanese patients with ALD. ABCD1 and ABCD2 were analyzed using a newly developed microarray-based resequencing system. ABCD3 and ABCD4 were analyzed by direct nucleotide sequence analysis. Replication studies were conducted on an independent French ALD cohort with extreme phenotypes. All the mutations of ABCD1 were identified, and there was no correlation between the genotypes and phenotypes of ALD. SNPs identified by the comprehensive resequencing of ABCD2, ABCD3, and ABCD4 were used for association studies. There were no significant associations between these SNPs and ALD phenotypes, except for the five SNPs of ABCD4, which are in complete disequilibrium in the Japanese population. These five SNPs were significantly less frequently represented in patients with adrenomyeloneuropathy (AMN) than in controls in the Japanese population (p = 0.0468), whereas there were no significant differences in patients with childhood cerebral ALD (CCALD). The replication study employing these five SNPs on an independent French ALD cohort, however, showed no significant associations with CCALD or pure AMN. This study showed that ABCD2, ABCD3, and ABCD4 are less likely the disease-modifying genes, necessitating further studies to identify genes modifying ALD phenotypes

    Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation

    Get PDF
    O-GlcNAcylated proteins are abundant in the brain and are associated with neuronal functions and neurodegenerative diseases. Although several studies have reported the effects of aberrant regulation of O-GlcNAcylation on brain function, the roles of O-GlcNAcylation in synaptic function remain unclear. To understand the effect of aberrant O-GlcNAcylation on the brain, we used Oga+/- mice which have an increased level of O-GlcNAcylation, and found that Oga+/- mice exhibited impaired spatial learning and memory. Consistent with this result, Oga+/- mice showed a defect in hippocampal synaptic plasticity. Oga heterozygosity causes impairment of both long-term potentiation and long-term depression due to dysregulation of AMPA receptor phosphorylation. These results demonstrate a role for hyper-O-GlcNAcylation in learning and memory.ope

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    The electroweak sector of the pMSSM in the light of LHC - 8 TeV and other data

    Full text link

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore