7,686 research outputs found

    The Single European Sky: What about the Liability Aspect?

    Get PDF
    Following the liberation of European air transport in the 90s, the Union has tried to implement dramatic changes by enacting the Single European Sky Regulations (SES). The cornerstone idea of the SES Regulations is to create so-called functional airspace blocks or FABs. These FABs will normally satisfy the growing capacity requirements of all airspace users and minimise delays by managing air traffic more dynamically. This will have as immediate consequences an increase in efficiency. This article will examine each of the Treaties establishing the FABs in detail with regard to the liability aspect only and, while acknowledging their advantages, it will point out the differences in the protection they offer and the consequences the author sees happening. This article will also suggest several improvements. The primary focus of the article is the liability aspect in the FAB Treaties, but references to agreements between ANSPs will also be included. Through showing the advantages of the proposal, this article highlights the hypothesis that the Single European Sky will not bring any changes to the current liability framework; to the contrary, it will further blur the general picture by adding a layer of fragmentation

    ATM automation: guidance on human technology integration

    Get PDF
    © Civil Aviation Authority 2016Human interaction with technology and automation is a key area of interest to industry and safety regulators alike. In February 2014, a joint CAA/industry workshop considered perspectives on present and future implementation of advanced automated systems. The conclusion was that whilst no additional regulation was necessary, guidance material for industry and regulators was required. Development of this guidance document was completed in 2015 by a working group consisting of CAA, UK industry, academia and industry associations (see Appendix B). This enabled a collaborative approach to be taken, and for regulatory, industry, and workforce perspectives to be collectively considered and addressed. The processes used in developing this guidance included: review of the themes identified from the February 2014 CAA/industry workshop1; review of academic papers, textbooks on automation, incidents and accidents involving automation; identification of key safety issues associated with automated systems; analysis of current and emerging ATM regulatory requirements and guidance material; presentation of emerging findings for critical review at UK and European aviation safety conferences. In December 2015, a workshop of senior management from project partner organisations reviewed the findings and proposals. EASA were briefed on the project before its commencement, and Eurocontrol contributed through membership of the Working Group.Final Published versio

    Evaluation of flight efficiency for Stockholm Arlanda Airport using OpenSky Network data

    Get PDF
    Identification of causes of the delays within transition airspace is an important step in evaluating performance of the Terminal Maneuvering Area (TMA) Air Navigation Services: without knowing the current performance levels, it is difficult to identify which areas could be improved. Inefficient vertical profiles within TMA and deviations from the optimal flight paths due to bad weather conditions are the main sources of performance decline. In this work, we analyse punctuality and vertical efficiency of Stockholm Arlanda airport arrivals, and seek to quantify the fuel consumption impact associated with the inefficient vertical flight profiles within the Terminal Maneuvering Area (TMA). We use Opensky Network data for evaluation of the Stockholm Arlanda airport performance, comparing it to the DDR2 data provided by Eurocontol, outlining the advantages and disadvantages of both.Peer ReviewedPostprint (author's final draft

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Controller workload, airspace capacity and future systems.

    No full text
    In air traffic control (ATC), controller workload – or controller mental workload – is an extremely important topic. There have been many research studies, reports and reviews on workload (as it will be referred to here). Indeed, the joke is that researchers will produce ‘reviews of reviews’ (Stein, 1998). The present document necessarily has something of that flavour, and does review many of the ‘breakthrough’ research results, but there is a concentration on some specific questions about workload

    An Empirically grounded Agent Based simulator for Air Traffic Management in the SESAR scenario

    Get PDF
    In this paper we present a simulator allowing to perform policy experiments relative to the air traffic management. Different SESAR solutions can be implemented in the model to see the reaction of the different stakeholders as well as other relevant metrics (delay, safety, etc). The model describes both the strategic phase associated to the planning of the flight trajectories and the tactical modifications occurring in the en-route phase. An implementation of the model is available as an open-source software and is freely accessible by any user. More specifically, different procedures related to business trajectories and free-routing are tested and we illustrate the capabilities of the model on an airspace which implements these concepts. After performing numerical simulations with the model, we show that in a free-routing scenario the controllers perform less operations but the conflicts are dispersed over a larger portion of the airspace. This can potentially increase the complexity of conflict detection and resolution for controllers. In order to investigate this specific aspect, we consider some metrics used to measure traffic complexity. We first show that in non-free-routing situations our simulator deals with complexity in a way similar to what humans would do. This allows us to be confident that the results of our numerical simulations relative to the free-routing can reasonably forecast how human controllers would behave in this new situation. Specifically, our numerical simulations show that most of the complexity metrics decrease with free-routing, while the few metrics which increase are all linked to the flight level changes. This is a non-trivial result since intuitively the complexity should increase with free-routing because of problematic geometries and more dispersed conflicts over the airspace

    NEWSKY - A concept for NEtWorking the SKY for civil aeronautical communications

    Get PDF
    In this paper, an overview of the NEWSKY project is given. This project is funded by the European Commission within the 6th framework program and will start in January 2007. The NEWSKY project is a feasibility study to clarify if it is possible to establish a heterogeneous network for aeronautical communications which is capable to integrate different communications systems as well as different applications into a single global aeronautical network. The envisaged applications comprise not only air-traffic control and management but also airline and passenger communications

    An Analysis of the Spatio-Temporal Factors Affecting Aircraft Conflicts Based on Simulation Modelling

    Get PDF
    The demand for air travel worldwide continues to grow at a rapid rate, especially in Europe and the United States. In Europe, the demand exceeded predictions with a real annual growth of 7.1% in the period 1985-1990, against a prediction of 2.4%. By the year 2010, the demand is expected to double from the 1990 level. Within the UK international scheduled passenger traffic is predicted to increase, on average, by 5.8 per cent per year between 1999 and 2003. The demand has not been matched by availability of capacity. In Western Europe many of the largest airports suffer from runway capacity constraints. Europe also suffers from an en-route airspace capacity constraint, which is determined by the workload of the air traffic controllers, i.e. the physical and mental work that controllers must undertake to safely conduct air traffic under their jurisdiction through en-route airspace. The annual cost to Europe due to air traffic inefficiency and congestion in en-route airspace is estimated to be 5 billion US Dollars, primarily due to delays caused by non-optimal route structures and reduced productivity of controllers due to equipment inefficiencies. Therefore, to in order to decrease the total delay, an increase in en-route capacity is of paramount importance. At a global scale and in the early 1980s, the International Civil Aviation Organisation (ICAO) recognised that the traditional air traffic control (ATC) systems would not cope with the growth in demand for capacity. Consequently new technologies and procedures have been proposed to enable ATC to cope with this demand, e.g. satellite-based system concept to meet the future civil aviation requirements for communication, navigation and surveillance/ air traffic management (CNS/ATM). In Europe, the organisation EUROCONTROL (established in 1960 to co-ordinate European ATM) proposed a variety of measures to increase the capacity of en-route airspace. A key change envisaged is the increasing delegation of responsibilities for control to flight crew, by the use of airborne separation assurance between aircraft, leading eventually to ?free flight? airspace. However, there are major concerns regarding the safety of operations in ?free flight? airspace. The safety of such airspace can be investigated by analysing the factors that affect conflict occurrence, i.e. a loss of the prescribed separation between two aircraft in airspace. This paper analyses the factors affecting conflict occurrence in current airspace and future free flight airspace by using a simulation model of air traffic controller workload, the RAMS model. The paper begins with a literature review of the factors that affect conflict occurrence. This is followed by a description of the RAMS model and of its use in this analysis. The airspace simulated is the Mediterranean Free Flight region, and the major attributes of this region and of the traffic demand patterns are outlined next. In particular a day?s air traffic is simulated in the two airspace scenarios, and rules for conflict detection and resolution are carefully defined. The following section outlines the framework for analysing the output from the simulations, using negative binomial (NB) and generalised negative binomial (GNB) regression, and discusses the estimation methods required. The next section presents the results of the regression analysis, taking into account the spatio-temporal nature of the data. The following section presents an analysis of the spatial and temporal pattern of conflicts in the two airspace scenarios across a day, highlighting possible metrics to indicate this. The paper concludes with future research directions based upon this analysis.

    Safety arguments for next generation location aware computing

    Get PDF
    Concerns over the accuracy, availability, integrity and continuity of Global Navigation Satellite Systems (GNSS) have limited the integration of GPS and GLONASS for safety-critical applications. More recent augmentation systems, such as the European Geostationary Navigation Overlay Service (EGNOS) and the North American Wide Area Augmentation System (WAAS) have begun to address these concerns. Augmentation architectures build on the existing GPS/GLONASS infrastructures to support locationbased services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance against ICAO safety performance criteria for aviation applications. During the next twelve months, we will see the full certification of EGNOS for SoL applications. This paper identifies strong similarities between the safety assessment techniques used in Europe and North America. Both have relied on hazard analysis techniques to derive estimates of the Probability of Hazardously Misleading Information (PHMI). Later sections identify significant differences between the approaches adopted in application development. Integrated fault trees have been developed by regulatory and commercial organisations to consider both infrastructure hazards and their impact on non-precision RNAV/VNAV approaches using WAAS. In contrast, EUROCONTROL and the European Space Agency have developed a more modular approach to safety-case development for EGNOS. It remains to be seen whether the European or North American strategy offers the greatest support as satellite based augmentation systems are used within a growing range of SoL applications from railway signalling through to Unmanned Airborne Systems. The key contribution of this paper is to focus attention on the safety arguments that might support this wider class of location based services
    • 

    corecore