636 research outputs found

    Induction of Proinflammatory Cytokines and C-Reactive Protein in Human Macrophage Cell Line U937 Exposed to Air Pollution Particulates

    Get PDF
    Exposure to particulate matter air pollution causes inflammatory responses and is associated with the progression of atherosclerosis and increased cardiovascular mortality. Macrophages play a key role in atherogenesis by releasing proinflammatory cytokines and forming foam cells in subendothelial lesions. The present study quantified the inflammatory response in a human macrophage cell line (U937) after exposure to an ambient particulate sample from urban dust (UDP) and a diesel exhaust particulate (DEP). The effect of native UDP and DEP was compared with their corresponding organic extracts (OE-UDP/OE-DEP) and stripped particles (sUDP/sDEP) to clarify their respective roles. Exposure to OE-UDP, OE-DEP, UDP, DEP, and 2,3,7,8-tetrachlorodibenzo-p-dioxin led to a greater increase of interleukin (IL)-8, tumor necrosis factor-α, and cyclooxygenase-2 mRNA expression than did the stripped particles, whereas sUDP, sDEP, UDP, and DEP led to a greater production of C-reactive protein and IL-6 mRNA. The particles and the organic extract-induced expression of cyclooxygenase-2 and cytochrome P450 (CYP)1a1 was significantly suppressed by co-treatment with an aryl hydrocarbon receptor (AhR) antagonist, indicating that these effects are mainly mediated by the organic components, which can activate the AhR and CYP1a1. In contrast, the induction of C-reactive protein and IL-6 seems to be a particle-related effect that is AhR independent. The inflammatory response induced by particulate matter was associated with a subsequent increase of cholesterol accumulation, a hallmark of foam cells. Together, these data illustrate the interaction between particulate matter and the inflammatory response as well as the formation of cholesterol-accumulating foam cells, which are early markers of cardiovascular disease

    Development of FRET Assay into Quantitative and High-throughput Screening Technology Platforms for Protein–Protein Interactions

    Get PDF
    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research and is a very powerful tool in elucidating protein interactions in many cellular processes. Ubiquitination and SUMOylation are multi-step cascade reactions, involving multiple enzymes and protein–protein interactions. Here we report the development of dissociation constant (Kd) determination for protein–protein interaction and cell-based high-throughput screening (HTS) assay in SUMOylation cascade using FRET technology. These developments are based on steady state and high efficiency of fluorescent energy transfer between CyPet and YPet fused with SUMO1 and Ubc9, respectively. The developments in theoretical and experimental procedures for protein interaction Kd determination and cell-based HTS provide novel tools in affinity measurement and protein interaction inhibitor screening. The Kd determined by FRET between SUMO1 and Ubc9 is compatible with those determined with other traditional approaches, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). The FRET-based HTS is pioneer in cell-based HTS. Both Kd determination and cell-based HTS, carried out in 384-well plate format, provide powerful tools for large-scale and high-throughput applications

    The B73 Maize Genome: Complexity, Diversity, and Dynamics

    Get PDF
    We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research

    Historical geography III: Climate matters

    Get PDF
    My third report covering recent research in historical geography focuses on climate, and particularly scholarship that explores how the meaning of climate and climate change varies in distinct cultural and temporal contexts. Viewing climate science, and more specifically interpretations of climate science, as a discourse amenable to cultural criticism suggests that notions of climate are and have always been a physical and social phenomenon. Reviewed research suggests that ideas of climate and climate change are intertwined with social mores, politics and institutions, philosophies of civilization and progress, and inseparable from the cultural expressions that give them meaning and, thus, are far too important to be left to climate scientists to narrate or interpret.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Computing optimal coalition structures in polynomial time

    Get PDF
    The optimal coalition structure determination problem is in general computationally hard. In this article, we identify some problem instances for which the space of possible coalition structures has a certain form and constructively prove that the problem is polynomial time solvable. Specifically, we consider games with an ordering over the players and introduce a distance metric for measuring the distance between any two structures. In terms of this metric, we define the property of monotonicity, meaning that coalition structures closer to the optimal, as measured by the metric, have higher value than those further away. Similarly, quasi-monotonicity means that part of the space of coalition structures is monotonic, while part of it is non-monotonic. (Quasi)-monotonicity is a property that can be satisfied by coalition games in characteristic function form and also those in partition function form. For a setting with a monotonic value function and a known player ordering, we prove that the optimal coalition structure determination problem is polynomial time solvable and devise such an algorithm using a greedy approach. We extend this algorithm to quasi-monotonic value functions and demonstrate how its time complexity improves from exponential to polynomial as the degree of monotonicity of the value function increases. We go further and consider a setting in which the value function is monotonic and an ordering over the players is known to exist but ordering itself is unknown. For this setting too, we prove that the coalition structure determination problem is polynomial time solvable and devise such an algorithm

    Glucose challenge increases circulating progenitor cells in Asian Indian male subjects with normal glucose tolerance which is compromised in subjects with pre-diabetes: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haematopoietic stem cells undergo mobilization from bone marrow to blood in response to physiological stimuli such as ischemia and tissue injury. The aim of study was to determine the kinetics of circulating CD34<sup>+ </sup>and CD133<sup>+</sup>CD34<sup>+ </sup>progenitor cells in response to 75 g glucose load in subjects with normal and impaired glucose metabolism.</p> <p>Methods</p> <p>Asian Indian male subjects (n = 50) with no prior history of glucose imbalance were subjected to 2 hour oral glucose tolerance test (OGTT). 24 subjects had normal glucose tolerance (NGT), 17 subjects had impaired glucose tolerance (IGT) and 9 had impaired fasting glucose (IFG). The IGT and IFG subjects were grouped together as pre-diabetes group (n = 26). Progenitor cell counts in peripheral circulation at fasting and 2 hour post glucose challenge were measured using direct two-color flow cytometry.</p> <p>Results</p> <p>The pre-diabetes group was more insulin resistant (p < 0.0001) as measured by homeostasis assessment model (HOMA-IR) compared to NGT group. A 2.5-fold increase in CD34<sup>+ </sup>cells (p = 0.003) and CD133<sup>+</sup>CD34<sup>+ </sup>(p = 0.019) cells was seen 2 hours post glucose challenge in the NGT group. This increase for both the cell types was attenuated in subjects with IGT. CD34<sup>+ </sup>cell counts in response to glucose challenge inversely correlated with neutrophil counts (ρ = -0.330, p = 0.019), while post load counts of CD133<sup>+</sup>CD34<sup>+ </sup>cells inversely correlated with serum creatinine (ρ = -0.312, p = 0.023).</p> <p>Conclusion</p> <p>There is a 2.5-fold increase in the circulating levels of haematopoietic stem cells in response to glucose challenge in healthy Asian Indian male subjects which is attenuated in subjects with pre-diabetes.</p
    corecore