2,234 research outputs found
RRS Discovery Cruise 381, 28 Aug - 03 Oct 2012. Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS)
Cruise D381 was made in support of NERC's Ocean Surface Boundary Layer theme action programme, OSMOSIS (Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study). The ocean surface boundary layer (OSBL) deepens in response to convective, wind and surface wave forcing, which produce three-dimensional turbulence that entrains denser water, deepening the layer. The OSBL shoals in response to solar heating and to mesoscale and sub-mesoscale motions that adjust lateral buoyancy gradients into vertical stratification. Recent and ongoing work is revolutionising our view of both the deepening and shoaling processes: new processes are coming into focus that are not currently recognised in model parameterisation schemes. In OSMOSIS we have a project which integrates observations, modelling studies and parameterisation development to deliver a step change in modelling of the OSBL. The OSMOSIS overall aim is to develop new, physically based and observationally supported, parameterisations of processes that deepen and shoal the OSBL, and to implement and evaluate these parameterisations in a state-of-the-art global coupled climate model, facilitating improved weather and climate predictions. Cruise D381 was split into two legs D381A and a process study cruise D381B. D381A partly deployed the OSMOSIS mooring array and two gliders for long term observations near the Porcupine Abyssal Plain Observatory. D381B firstly completed mooring and glider deployment work begun during the preceding D381A cruise. D381B then carried out several days of targetted turbulence profiling looking at changes in turbulent energy dissipation resulting from the interation of upper ocean fluid structures such as eddies, sub-mesoscale filaments and Langmuir cells with surface wind and current shear. Finally D381B conducted two spatial surveys with the towed SeaSoar vehicle to map and diagnose the mesoscale and sub-mesoscale flows, which, unusually, are the `large scale' background in which this study sits
RRS Discovery Cruise 381, 28 Aug - 03 Oct 2012. Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS)
Cruise D381 was made in support of NERC's Ocean Surface Boundary Layer theme action programme, OSMOSIS (Ocean Surface Mixing, Ocean Sub-mesoscale Interaction Study). The ocean surface boundary layer (OSBL) deepens in response to convective, wind and surface wave forcing, which produce three-dimensional turbulence that entrains denser water, deepening the layer. The OSBL shoals in response to solar heating and to mesoscale and sub-mesoscale motions that adjust lateral buoyancy gradients into vertical stratification. Recent and ongoing work is revolutionising our view of both the deepening and shoaling processes: new processes are coming into focus that are not currently recognised in model parameterisation schemes. In OSMOSIS we have a project which integrates observations, modelling studies and parameterisation development to deliver a step change in modelling of the OSBL. The OSMOSIS overall aim is to develop new, physically based and observationally supported, parameterisations of processes that deepen and shoal the OSBL, and to implement and evaluate these parameterisations in a state-of-the-art global coupled climate model, facilitating improved weather and climate predictions. Cruise D381 was split into two legs D381A and a process study cruise D381B. D381A partly deployed the OSMOSIS mooring array and two gliders for long term observations near the Porcupine Abyssal Plain Observatory. D381B firstly completed mooring and glider deployment work begun during the preceding D381A cruise. D381B then carried out several days of targetted turbulence profiling looking at changes in turbulent energy dissipation resulting from the interation of upper ocean fluid structures such as eddies, sub-mesoscale filaments and Langmuir cells with surface wind and current shear. Finally D381B conducted two spatial surveys with the towed SeaSoar vehicle to map and diagnose the mesoscale and sub-mesoscale flows, which, unusually, are the `large scale' background in which this study sits
Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B
We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of were emitted within the – Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively.United States National Science Foundation (NSF)Science and Technology Facilities Council (STFC) of the United KingdomMax-Planck-Society (MPS)State of NiedersachsenAustralian Research CouncilItalian Istituto Nazionale di Fisica Nucleare (INFN)French Centre National de la Recherche Scientifique (CNRS)Netherlands Organisation for Scientific ResearchCouncil of Scientific and Industrial Research of IndiaScience & Engineering Research Board (SERB), IndiaMinistry of Human Resource Development, IndiaSpanish Ministerio de Economía y CompetitividadConselleria d’Economia i CompetitivitatConselleria d’Educació Cultura i Universitats of the Govern de les Illes BalearsNational Science Centre of PolandEuropean CommissionRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceHungarian Scientific Research Fund (OTKA)Lyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of OntarioBrazilian Ministry of ScienceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Russian Foundation for Basic ResearchLeverhulme TrustMinistry of Science and Technology (MOST)Kavli FoundationNASA/NNX15AU74GRFBR/15-02-00532-iRFBR/16-29-13009-ofi-
Screening families of patients with premature coronary heart disease to identify avoidable cardiovascular risk: a cross-sectional study of family members and a general population comparison group
<b>Background:</b>
Primary prevention should be targeted at individuals with high global cardiovascular risk, but research is lacking on how best to identify such individuals in the general population. Family history is a good proxy measure of global risk and may provide an efficient mechanism for identifying high risk individuals. The aim was to test the feasibility of using patients with premature cardiovascular disease to recruit family members as a means of identifying and screening high-risk individuals.
<b>Findings:</b>
We recruited family members of 50 patients attending a cardiology clinic for premature coronary heart disease (CHD). We compared their cardiovascular risk with a general population control group, and determined their perception of their risk and current level of screening. 103 (36%) family members attended screening (27 siblings, 48 adult offspring and 28 partners). Five (5%) had prevalent CHD. A significantly higher percentage had an ASSIGN risk score >20% compared with the general population (13% versus 2%, p < 0.001). Only 37% of family members were aware they were at increased risk and only 50% had had their blood pressure and serum cholesterol level checked in the previous three years.
<b>Conclusions:</b>
Patients attending hospital for premature CHD provide a mechanism to contact family members and this can identify individuals with a high global risk who are not currently screened
Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential
The process of fracture in ductile metals involves the nucleation, growth,
and linking of voids. This process takes place both at the low rates involved
in typical engineering applications and at the high rates associated with
dynamic fracture processes such as spallation. Here we study the growth of a
void in a single crystal at high rates using molecular dynamics (MD) based on
Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals
V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the
study of plasticity associated with void growth at the atomic level at room
temperature and strain rates from 10^9/s down to 10^6/s and systems as large as
128 million atoms. The atomistic systems are observed to undergo a transition
from twinning at the higher end of this range to dislocation flow at the lower
end. We analyze the simulations for the specific mechanisms of plasticity
associated with void growth as dislocation loops are punched out to accommodate
the growing void. We also analyse the process of nucleation and growth of voids
in simulations of nanocrystalline Ta expanding at different strain rates. We
comment on differences in the plasticity associated with void growth in the bcc
metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure
Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients
It is known by the experience gained from the gravitational wave detector
proto-types that the interferometric output signal will be corrupted by a
significant amount of non-Gaussian noise, large part of it being essentially
composed of long-term sinusoids with slowly varying envelope (such as violin
resonances in the suspensions, or main power harmonics) and short-term ringdown
noise (which may emanate from servo control systems, electronics in a
non-linear state, etc.). Since non-Gaussian noise components make the detection
and estimation of the gravitational wave signature more difficult, a denoising
algorithm based on adaptive filtering techniques (LMS methods) is proposed to
separate and extract them from the stationary and Gaussian background noise.
The strength of the method is that it does not require any precise model on the
observed data: the signals are distinguished on the basis of their
autocorrelation time. We believe that the robustness and simplicity of this
method make it useful for data preparation and for the understanding of the
first interferometric data. We present the detailed structure of the algorithm
and its application to both simulated data and real data from the LIGO 40meter
proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.
Constraints on cosmic strings from the ligo-virgo gravitational-wave detectors
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10−8 in some regions of the cosmic string parameter space. © 2014 The American Physical Societ
Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1 190] Hz and with frequency derivative range of ∼[−20,1.1]×10−10 Hz s−1 for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6×10−25 at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data
Directed search for continuous gravitational waves from the Galactic center
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to −7.86×10−8 Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ∼3.35×10−25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals. © 2013 The American Physical Societ
- …
