15,430 research outputs found
Higgs windows to new physics through d = 6 operators: Constraints and one-loop anomalous dimensions
The leading contributions from heavy new physics to Higgs processes can be
captured in a model-independent way by dimension-six operators in an effective
Lagrangian approach. We present a complete analysis of how these contributions
affect Higgs couplings. Under certain well-motivated assumptions, we find that
8 CP-even plus 3 CP-odd Wilson coefficients parametrize the main impact in
Higgs physics, as all other coefficients are constrained by non-Higgs SM
measurements. We calculate the most relevant anomalous dimensions for these
Wilson coefficients, which describe operator mixing from the heavy scale down
to the electroweak scale. This allows us to find the leading-log corrections to
the predictions for the Higgs couplings in specific models, such as the MSSM or
composite Higgs, which we find to be significant in certain cases.Comment: 45 pages. Some minor typos fixed. Matches published versio
Self collimation of ultrasound in a 3D sonic crystal
We present the experimental demonstration of self-collimation (subdiffractive
propagation) of an ultrasonic beam inside a three-dimensional sonic crystal.
The crystal is formed by two crossed steel cylinders structures in a
woodpile-like geometry disposed in water. Measurements of the 3D field
distribution show that a narrow beam which diffractively spreads in the absence
of the sonic crystal is strongly collimated in propagation inside the crystal,
demonstrating the 3D self-collimation effect.Comment: 3 figures, submitted to Applied Physics Letter
The Higgs mass in the MSSM infrared fixed point scenario
In the infrared fixed point (IFP) scenario of the minimal supersymmetric
model (MSSM), the top-quark mass and other physical quantities of the
low-energy theory are insensitive to the values of the parameters of the theory
at some high energy scale. In this framework we evaluate the light CP-even
Higgs mass, , taking into account some important effects that had not been
previously considered. In particular, the supersymmetric correction to the
relation between the running and the physical top-quark masses lowers the value
of , thereby implying a lower predicted value of . Assuming a
supersymmetric threshold of TeV and GeV, we find an upper
bound of GeV; the most plausible value of lies somewhat
below the upper bound. This places the Higgs boson in the IFP scenario well
within the reach of the LEP-2 Higgs search.Comment: 18 pages, LaTeX, 5 ps figures, uses psfig.sty. Final version, some
comments and a figure added, references correcte
Flux-cutting and flux-transport effects in type-II superconductor slabs in a parallel rotating magnetic field
The magnetic response of irreversible type-II superconductor slabs subjected
to in-plane rotating magnetic field is investigated by applying the circular,
elliptic, extended-elliptic, and rectangular flux-line-cutting critical-state
models. Specifically, the models have been applied to explain experiments on a
PbBi rotating disk in a fixed magnetic field , parallel to the flat
surfaces. Here, we have exploited the equivalency of the experimental situation
with that of a fixed disk under the action of a parallel magnetic field,
rotating in the opposite sense. The effect of both the magnitude of the
applied magnetic field and its angle of rotation upon the
magnetization of the superconductor sample is analyzed. When is smaller
than the penetration field , the magnetization components, parallel and
perpendicular to , oscillate with increasing the rotation angle. On
the other hand, if the magnitude of the applied field, , is larger than
, both magnetization components become constant functions of at
large rotation angles. The evolution of the magnetic induction profiles inside
the superconductor is also studied.Comment: 12 pages, 29 figure
Research study of droplet sizing technology leading to the development of an advanced droplet sizing system
An instrument to measure the size and velocity of droplets was developed. The instrument uses one of two techniques, as appropriate. In the first technique two small laser beams of one color identify the center of a larger laser beam of a different color. This defines a region of almost uniform intensity where the light scattered by the individual droplets can be related to their size. The first technique uses the visibility of a Doppler burst and validates it against the peak intensity of the signal's pedestal. Results are presented for monodisperse, bimodal, trimodal, and polydisperse sprays produced by the Berglund-Liu droplet generator and a pressure nozzle. Size distributions of a given spray obtained using three different size ranges show excellent self-consistency in the overlapping region. Measurements of sprays of known characteristics exhibit errors in the order of 10%. The principles of operation and design criteria of the instrument are discussed in great detail
- …
