42 research outputs found

    Tunneling spectroscopy in the magnetic superconductor TmNi2B2C

    Full text link
    We present new measurements about the tunneling conductance in the borocarbide superconductor TmNi2_2B2_2C. The results show a very good agreement with weak coupling BCS theory, without any lifetime broadening parameter, over the whole sample surface. We detect no particular change of the tunneling spectroscopy below 1.5K, when both the antiferromagnetic (AF) phase and the superconducting order coexist.Comment: Submitted to Phys. Rev. B, Rapid Communication

    Anomalous Flux Flow Resistivity in Two Gap Superconductor MgB_2

    Full text link
    The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is markedly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual H-dependence indicates that two very differently sized superconducting gaps in MgB_2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat capacity and thermal conductivity results.Comment: 4 pages, 3figure

    Ginzburg-Landau theory of vortices in a multi-gap superconductor

    Full text link
    The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then, applied to investigate various magnetic properties of MgB2 including an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated vortex. Orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel to the c-axis. A peculiar 30-degree rotation of the vortex lattice with increasing strength of an applied field observed by neutron scattering is attributed to the multi-gap nature of superconductivity in MgB2.Comment: 11 page
    corecore