2,169 research outputs found
Holographic rho mesons in an external magnetic field
We study the rho meson in a uniform magnetic field eB using a holographic
QCD-model, more specifically a D4/D8/Dbar8 brane setup in the confinement phase
at zero temperature with two quenched flavours. The parameters of the model are
fixed by matching to corresponding dual field theory parameters at zero
magnetic field. We show that the up- and down-flavour branes respond
differently to the presence of the magnetic field in the dual QCD-like theory,
as expected because of the different electromagnetic charge carried by up- and
down-quark. We discuss how to recover the Landau levels, indicating an
instability of the QCD vacuum at eB = m_rho^2 towards a phase where charged rho
mesons are condensed, as predicted by Chernodub using effective QCD-models. We
improve on these existing effective QCD-model analyses by also taking into
account the chiral magnetic catalysis effect, which tells us that the
constituent quark masses rise with eB. This turns out to increase the value of
the critical magnetic field for the onset of rho meson condensation to eB = 1.1
m_rho^2 = 0.67 GeV^2. We briefly discuss the influence of pions, which turn out
to be irrelevant for the condensation in the approximation made.Comment: 26 pages, 10 .pdf figures, v2: version accepted for publication in
JHE
Anomaly and a QCD-like phase diagram with massive bosonic baryons
We study a strongly coupled lattice gauge theory with two flavors of
quarks, invariant under an exact symmetry which is the same as QCD with
two flavors of quarks without an anomaly. The model also contains a coupling
that can be used to break the symmetry and thus mimic the QCD
anomaly. At low temperatures and small baryon chemical potential
the model contains massless pions and massive bosonic baryons similar to QCD
with an even number of colors. In this work we study the phase
diagram of the model and show that it contains three phases : (1) A chirally
broken phase at low and , (2) a chirally symmetric baryon superfluid
phase at low and high , and (3) a symmetric phase at high . We
find that the nature of the finite temperature chiral phase transition and in
particular the location of the tricritical point that seperates the first order
line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde
High-throughput, quantitative analyses of genetic interactions in E. coli.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
Protection of rat renal vitamin E levels by ischemic-preconditioning
BACKGROUND: During renal transplantation, the kidney remains without blood flow for a period of time. The following reperfusion of this ischemic kidney causes functional and structural injury. Formation of oxygen-derived free radicals (OFR) and subsequent lipid peroxidation (LP) has been implicated as the causative factors of these injuries. Vitamin E is known to be the main endogenous antioxidant that stabilizes cell membranes by interfering with LP. The present study was designed to examine the role of ischemic-preconditioning (repeated brief periods of ischemia, IPC) in prevention of renal injury caused by ischemia-reperfusion (IR) in rats. METHODS: IPC included sequential clamping of the right renal artery for 5 min and release of the clamp for another 5 min for a 3 cycles. IR was induced by 30 min ischemia followed by 10 min reperfusion. Four groups of male rats were used: Control, IPC, IR and IPC-IR. Vitamin E, an endogenous antioxidant and as an index of LP, was measured by HPLC and UV detection in renal venous plasma and tissue. Renal function was assessed by serum creatinine and BUN levels. Renal damage was assessed in sections stained with Haematoxylin and Eosin. RESULTS: In the IR group, there was a significant decrease in vitamin E in plasma and tissue compared to a control group (p,0.05). In the IPC-IR group, vitamin E concentration was significantly higher than in the IR group (p,0.01). The results showed that 30 min ischemia in the IR group significantly (p,0.05) reduced renal function demonstrated by an increase in serum creatinine levels as compared with the control group. These results in the IPC group also showed a significant difference with the IR group but no significant difference in serum BUN and creatinine between IR and IPC-IR group were detected. Histological evaluation showed no structural damage in the IPC group and an improvement in the IPC-IR group compared to IR alone. CONCLUSIONS: In this study, IPC preserved vitamin E levels, but it could not markedly improve renal function in the early phase (1–2 h) of reperfusion. IPC may be a useful method for antioxidant preservation in organ transplantation
Markers for the identification of late breast cancer recurrence
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited
Measurement of the cosmic-ray antiproton spectrum in the range 0.12 to 0.4 GeV with BESS-Polar II
The energy spectra of cosmic-ray antiprotons and protons near solar minimum were precisely measured with BESS-Polar II (Balloon-borne Experiment with a Superconducting Spectrometer) during a long-duration flight over Antarctica in December 2007 and January 2008. The upper-TOF (UTOF) and lower-TOF (LTOF) scintillator hodoscopes measure the charge and velocity of incident particles. A thin plastic scintillator middle-TOF (MTOF) hodoscope is installed on the lower surface of the magnet bore to measure low-energy particles that cannot reach the LTOF. The MTOF further lowers the threshold energy to about 120 MeV for antiproton or proton measurements. We report absolute spectra of the cosmic-ray antiproton in the range 0.12 to 0.4 GeV and the antiproton/proton ratio calculated with UTOF-MTOF trigger events. These new results are independent of the UTOF-LTOF triggered antiproton spectrum published in 2012 and proton spectrum published in 2016
Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis.
Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p < 0.05). Osteoid parameters were raised in FMiS-containing bone specimens (OV/BV, 2.1 ± 1.6 vs. 0.6 ± 0.3%; p < 0.001, OS/BS, 23.6 ± 15.5 vs. 7.6 ± 4.2%; p < 0.001, and O.Th, 7.4 µm ± 2.0 vs. 5.2 ± 1.0; p < 0.05). Our results showed that the modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
- …