7 research outputs found

    Emerging Technologies for the Detection of Rabies Virus: Challenges and Hopes in the 21st Century

    Get PDF
    The diagnosis of rabies is routinely based on clinical and epidemiological information, especially when exposures are reported in rabies-endemic countries. Diagnostic tests using conventional assays that appear to be negative, even when undertaken late in the disease and despite the clinical diagnosis, have a tendency, at times, to be unreliable. These tests are rarely optimal and entirely dependent on the nature and quality of the sample supplied. In the course of the past three decades, the application of molecular biology has aided in the development of tests that result in a more rapid detection of rabies virus. These tests enable viral strain identification from clinical specimens. Currently, there are a number of molecular tests that can be used to complement conventional tests in rabies diagnosis. Indeed the challenges in the 21st century for the development of rabies diagnostics are not of a technical nature; these tests are available now. The challenges in the 21st century for diagnostic test developers are two-fold: firstly, to achieve internationally accepted validation of a test that will then lead to its acceptance by organisations globally. Secondly, the areas of the world where such tests are needed are mainly in developing regions where financial and logistical barriers prevent their implementation. Although developing countries with a poor healthcare infrastructure recognise that molecular-based diagnostic assays will be unaffordable for routine use, the cost/benefit ratio should still be measured. Adoption of rapid and affordable rabies diagnostic tests for use in developing countries highlights the importance of sharing and transferring technology through laboratory twinning between the developed and the developing countries. Importantly for developing countries, the benefit of molecular methods as tools is the capability for a differential diagnosis of human diseases that present with similar clinical symptoms. Antemortem testing for human rabies is now possible using molecular techniques. These barriers are not insurmountable and it is our expectation that if such tests are accepted and implemented where they are most needed, they will provide substantial improvements for rabies diagnosis and surveillance. The advent of molecular biology and new technological initiatives that combine advances in biology with other disciplines will support the development of techniques capable of high throughput testing with a low turnaround time for rabies diagnosis

    Uso de sistemas de informação geográfica em campanhas de vacinação contra a raiva Uso de sistemas de información geográfica en campañas de vacunación contra la rabia Use of geographic information systems in rabies vaccination campaigns

    Get PDF
    OBJETIVO: Desenvolver método para planejamento e avaliação de campanhas de vacinação contra a raiva animal. MÉTODOS: O desenvolvimento da metodologia baseou-se em sistemas de informação geográfica para estimar a população e a densidade animal (canina e felina) por setores censitários e subprefeituras do município de São Paulo, em 2002. O número de postos de vacinação foi estimado para atingir uma dada cobertura vacinal. Foram utilizadas uma base de dados censitários para a população humana, e estimativas para razões cão:habitante e gato:habitante. RESULTADOS: Os números estimados foram de 1.490.500 cães e 226.954 gatos em São Paulo, uma densidade populacional de 1.138,14 animais domiciliados por km². Foram vacinados, na campanha de 2002, 926.462 animais, garantindo uma cobertura vacinal de 54%. O número total estimado de postos no município para atingir uma cobertura vacinal de 70%, vacinando em média 700 animais por posto foi de 1.729. Estas estimativas foram apresentadas em mapas de densidade animal, segundo setores censitários e subprefeituras. CONCLUSÕES: A metodologia desenvolvida pode ser aplicada de forma sistemática no planejamento e no acompanhamento das campanhas de vacinação contra a raiva, permitindo que sejam identificadas áreas de cobertura vacinal crítica.<br>OBJETIVO: Desarrollar método para planificación y evaluación de campañas de vacunación contra la rabia animal. MÉTODOS: El desarrollo de la metodología se basó en sistemas de información geográfica para estimar la población y la densidad animal (canina y felina) por sectores censales y sub-prefecturas del municipio de Sao Paulo (Sureste de Brasil), en 2002. El número de puestos de vacunación fue estimado para atender una determinada cobertura de vacunación. Se utilizaron una base de datos censales para la población humana, y estimativas para razones perro: habitante y gato: habitante. RESULTADOS: Los números estimados fueron de 1.490.500 perros y 226.954 en Sao Paulo, una densidad poblacional de 1.138,14 animales domiciliados por km2. Fueron vacunados, en la campaña de 2002, 926.462 animales, garantizando una cobertura de vacunas de 54%. El número total estimado de puestos en el municipio para atender una cobertura de vacunación de 70%, vacunando en promedio 700 animales por puesto fue de 1.729. Estas estimaciones fueron presentadas en mapas de densidad animal, según sectores censales y sub-prefecturas. CONCLUSIONES: La metodología desarrollada puede ser aplicada de forma sistemática en la planificación y en el acompañamiento de las campañas de vacunación contra la rabia, permitiendo que sean identificadas áreas de cobertura de vacunación crítica.<br>OBJECTIVE: To develop a method to assist in the design and assessment of animal rabies control campaigns. METHODS: A methodology was developed based on geographic information systems to estimate the animal (canine and feline) population and density per census tract and per subregion (known as "Subprefeituras") in the city of São Paulo (Southeastern Brazil) in 2002. The number of vaccination units in a given region was estimated to achieve a certain proportion of vaccination coverage. Census database was used for the human population, as well as estimates ratios of dog:inhabitant and cat:inhabitant. RESULTS: Estimated figures were 1,490,500 dogs and 226,954 cats in the city, i.e. an animal population density of 1138.14 owned animals per km². In the 2002 campaign, 926,462 were vaccinated, resulting in a vaccination coverage of 54%. The estimated number of vaccination units to be able to reach a 70%-vaccination coverage, by vaccinating 700 animals per unit on average, was 1,729. These estimates are presented as maps of animal density according to census tracts and "Subprefeituras". CONCLUSIONS: The methodology used in the study may be applied in a systematic way to the design and evaluation of rabies vaccination campaigns, enabling the identification of areas of critical vaccination coverage

    Die Tollwut

    No full text

    The Nervous System

    No full text
    corecore