40 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    The Effects of Gases Emitted From Landfills on Soils and Crops

    No full text

    Hazards from methane (and carbon dioxide)

    No full text

    Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus

    Get PDF
    The 16S rRNA gene sequences of 12 strains of Thiobacillus thioparus held by different culture collections have been compared. A definitive sequence for the reference type strain (Starkey; ATCC 8158T) was obtained. The sequences for four examples of the Starkey type strain were essentially identical, confirming their sustained identity after passage through different laboratories. One strain (NCIMB 8454) was reassigned as a strain of Halothiobacillus neapolitanus, and a second (NCIMB 8349) was a species of Thermithiobacillus. These two strains have been renamed in their catalog by the National Collection of Industrial and Marine Bacteria. The 16S rRNA gene sequence of the type strain of Halothiobacillus neapolitanus (NCIMB 8539T) was determined and used to confirm the identity of other culture collection strains of this species. The reference sequences for the type strains of Thiobacillus thioparus and Halothiobacillus neapolitanus have been added to the online List of Prokaryotic Names with Standing in Nomenclature. Comparison of the 16S rRNA gene sequences available for strains of Thiobacillus denitrificans indicated that the sequence for the type strain (NCIMB 9548T) should always be used as the reference sequence for new and existing isolates
    corecore