THE UNIVERSITY OF

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): Rich Boden, David Cleland, Peter N. Green, Yoko Katayama, Yoshihito Uchino, J. Colin Murrell and Donovan P. Kelly Article Title: Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus Year of publication: 2012

Link to published article: http;//dx.doi.org/10.1007/s00203-011-0747-0 Publisher statement: : The original publication is available at www.springerlink.com

1	Phylogenetic assessment of culture collection strains of Thiobacillus
2	thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T.
3	denitrificans and Halothiobacillus neapolitanus
4	
5	Rich Boden • David Cleland • Peter N. Green • Yoko Katayama • Yoshihito
6	Uchino • J. Colin Murrell • Donovan P. Kelly
7	
8	Footnotes
9	
10	R. Boden · J. C. Murrell · D. P. Kelly ())
11	School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
12	E-mail D.P.Kelly@warwick.ac.uk (Donovan Kelly)
13	Tel.: + 44 (0) 24 7657 2907; fax: +44 (0) 24 7652 3701
14	
15	D. Cleland
16	American Type Culture Collection, P.O. Box 1549, Manassas, VA 20108, USA
17	
18	P. N. Green
19	National Collection of Industrial and Marine Bacteria Ltd, Ferguson Building,
20	Craibstone Estate, Bucksburn, Aberdeen, AB21 YA, Scotland
21	
22	Y. Katayama
23	Department of Environmental and Natural Resource Science, Graduate School of
24	Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-
25	8509 Japan

27	Y. U	Chino

- 28 NITE Biological Research Center, National Institute of Technology and Evaluation,
- 29 2-5-8 Kazasakamatari, Kisarazu-shi, Chiba, 292-0818 Japan
- 31 Nucleotide sequence data reported are available in the DDBJ/ EMBL/GenBank
- 32 databases under the accession numbers HM173629 (*T. thioparus* ATCC 8158^{T}),
- 33 HM173630 (*T. thioparus* NCIMB 8370^T), GU967679 (*T. thioparus* DSM 505^T),
- 34 HM535226 (*T. thioparus* THI 111, JCM 3859^T, NBRC 103402^T), GU967680 (*T.*
- 35 thioparus DSM 5369), GU967681 (T. thioparus DSM 5368), HM173633 (T.
- 36 thioparus ATCC 23645), HM173634 (T. thioparus ATCC 23647), HM173635 (T.
- 37 thioparus ATCC 23646), HM535225 (T. thioparus THI 115, NBRC 105750),
- 38 JF416645 (Halothiobacillus neapolitanus NCIMB 8539^T), HM173632
- 39 (Halothiobacillus neapolitanus NCIMB 8454), and HM173631 (Thermithiobacillus
- 40 sp. NCIMB 8349).
- 41
- 42
- 43

44	Abstract The 16S rRNA gene sequences of 12 strains of Thiobacillus thioparus held
45	by different culture collections have been compared. A definitive sequence for the
46	reference type strain (Starkey; ATCC 8158 ^T) was obtained. The sequences for four
47	examples of the Starkey type strain were essentially identical, confirming their
48	sustained identity after passage through different laboratories. One strain (NCIMB
49	8454) was reassigned as a strain of Halothiobacillus neapolitanus and a second
50	(NCIMB 8349) was a species of <i>Thermithiobacillus</i> . These two strains have been
51	renamed in their catalogue by the National Collection of Industrial and Marine
52	Bacteria. The 16S rRNA gene sequence of the type strain of Halothiobacillus
53	neapolitanus (NCIMB 8539 ^T) was determined, and used to confirm the identity of
54	other culture collection strains of this species. The reference sequences for the type
55	strains of Thiobacillus thioparus and Halothiobacillus neapolitanus have been added
56	to the on-line List of Prokaryotic Names with Standing in Nomenclature. Comparison
57	of the 16S rRNA gene sequences available for strains of Thiobacillus denitrificans
58	indicated that the sequence for the type strain (NCIMB 9548 ^T) should always be used
59	as the reference sequence for new and existing isolates.
60	

- **Keywords** Halothiobacillus neapolitanus, Thermithiobacillus, Thiobacillus X,
- 62 Thiobacillus thioparus, Thiobacillus denitrificans, type strains

65 Introduction

66

67 Sulfur bacteria commonly known as thiobacilli are ubiquitous in the natural 68 environment, and are chemolithithoautotrophic *Proteobacteria* which gain energy 69 from sulfur compound oxidation to fix carbon dioxide for biosynthesis and growth. 70 Some species are halophiles, thermophiles, extreme acidophiles, or facultative 71 anaerobes, and some tolerate high levels of toxic metals (Hutchinson et al. 1966, 1967; 72 Rawlings 2002; Wood and Kelly 1985, 1991). Their activities can be both damaging 73 to the environment, and exploited for biotechnology. Sulfuric acid production from 74 their metabolism can cause extreme damage to concrete structures, and their 75 production of acid mine drainage containing toxic metals can cause severe pollution 76 of water and soils (Evanglou and Zhang 1995; Kelly 2010; Mudd and Patterson 2010; 77 Parker 1945; Parker and Jackson 1965). Mineral leaching by some species has been 78 used for many years for the economic recovery of metals, principally copper, but 79 including uranium, nickel, zinc and gold (Brandl 2008; Chen et al. 2008; Ehrlich and 80 Brierley 1990; Kelly 1985; Rawlings 2002). Denitrifying strains have been used in 81 the bioremediation of nitrate-polluted waters, and both aerobic and anaerobic strains 82 have been used to degrade thiocyanate, and to remove hydrogen sulfide and 83 methylated sulfides from contaminated air streams or natural gas (Aroca et al. 2007; 84 Kanagawa and Kelly 1986; Kanagawa and Mikami 1989; Katayama and Kuraishi 85 1978; Ramirez et al. 2009; Sublette and Sylvester 1987; Zhang et al. 2009). There is 86 also evidence that some species can underpin chemolithotrophically-driven 87 ecosystems in the absence of photosynthetic energy (Chen et al. 2009). Intensive 88 study of their biochemistry has not yet fully elucidated their mechanism(s) of sulfur

compound oxidation, and possible differences among different groups of thiobacilli
necessitate precise taxonomic characterization of strains and species.

91 The genus Thiobacillus was created by Beijerinck (1904) to comprise two species 92 of obligately chemolithoautotrophic sulfur-oxidizing bacteria: the aerobic 93 Thiobacillus thioparus and the facultative denitrifier, Thiobacillus denitrificans. 94 Subsequently, numerous other additional species were described, differentiated by 95 colony morphology and a limited number of physiological characteristics (as the 96 standard criteria applied to heterotrophs could not be applied to obligate 97 chemolithotrophs), including variation in the sulfur substrates used and the oxidation 98 products observed. Between 1923-1998, paralleling the first to ninth editions of 99 Bergey's Manual of Determinative Bacteriology (1923-1994) and the first edition of 100 Bergey's Manual of Systematic Bacteriology (1998), at least 32 species were named, 101 many of which were never validated or were subsequently lost from culture. The first 102 comprehensive attempt to assess the relationships of a number of species used 103 numerical taxonomy based on numerous physiological and cultural properties 104 (Hutchinson et al. 1965, 1966, 1967, 1969). Subsequently, with the advent of 16S 105 rRNA gene sequencing and other diagnostic molecular methods, a number of species 106 were transferred to other existing or new genera, including Acidiphilium, 107 Acidithiobacillus, Halothiobacillus, Paracoccus, Starkeya, Thermithiobacillus and 108 Thiomonas (Battaglia-Brunet et al. 2011; Hiraishi and Imhoff 2005; Katayama et al. 2006; Kelly and Wood 1998, 2000a; Kelly et al. 2000, 2005, 2007). The 2nd edition 109 110 of Bergey's Manual of Systematic Bacteriology recognized only three validly named 111 species and one putative species (Kelly et al. 2005). Currently only six distinct 112 species can be accepted on the basis of their 16S rRNA gene sequences, namely T. thioparus, T. denitrificans, T. aquaesulis, T. thiophilus, "T. plumbophilus", and "T. 113

sajanensis". Of these, only Beijerinck's original species, *T. thioparus* and *T.*

115 *denitrificans* (Beijerinck 1904), have been retained through all the editions of

116 Bergey's Manuals. The original isolates of those species were lost (L. A. Robertson,

117 Delft, personal communication), and no culture collection reference strains were cited

118 in the 8th edition of *Bergey's Manual* (Vishniac 1974). The type strain of the type

119 species of the genus, *Thiobacillus thioparus*, was formalized as that isolated by

120 Starkey (1934) and deposited as ATCC 8158^T (Kelly and Harrison 1989). This strain

121 was widely used and was deposited as the type strain in various culture collections,

122 after passage through several laboratories. In addition, several new strains identified

123 physiologically as *T. thioparus* were deposited in culture collections.

Our aims were (1) to use 16S rRNA gene sequencing to assess whether examples of the Starkey strain held in several major international collections were all correct, given their different culture histories (Table 1); (2) to obtain a definitive reference 16S rRNA gene sequence, against which other culture collections strains and new isolates could be tested: the sequence currently available (M79426) is of relatively low quality;

129 and (3) to determine if newer isolates deposited as *T. thioparus* were in fact well-

130 founded examples of the species.

Additionally, we wished to obtain the 16S rRNA gene sequence of the type strain

132 of *Halothiobacillus neapolitanus* NCIMB 8539^T, deposited by Parker as *Thiobacillus*

133 X (strain X44; Parker 1947, 1957; Parker and Prisk 1953; Parker and Jackson 1965).

134 The complete genome of a strain of *H. neapolitanus* (strain c2; ATCC 23641) was

available (NR_013422), and this strain is regarded as a derivative of the type strain X.

136 Its culture history prior to deposition was, however, significantly remote from the

137 original isolate: it was passed by Parker to P.A. Trudinger in the 1950s (Trudinger

138 1959, 1961, personal communication, 1966), by him to W. Vishniac in the USA, and

- 139 from Vishniac to D. White in the UK, who deposited it with the ATCC, using the
- 140 code name "c2" employed in the taxonomic studies of White's group (Hutchinson et
- 141 al. 1965, 1969): <u>http://www.lgcstandards-</u>
- 142 <u>atcc.org/LGCAdvancedCatalogueSearch/ProductDescription/tabid/1068/Default.aspx</u>.
- 143 Opportunity had thus existed for a change of properties, or contamination, compared
- 144 to the original type strain. Our aims were to obtain a definitive reference sequence for
- 145 the 16S rRNA gene of the type strain, and to validate the sequences for the well-
- 146 studied strains of *H. neapolitanus* (ATCC 23641 and DSM 581). We also compared
- 147 the 16S rRNA genes of the type strain of *Thiobacillus denitrificans* (NCIMB 9548^T)
- 148 with those in the complete genome of strain ATCC 25259 (Beller et al. 2006).
- 149

150 Materials and Methods

- 151
- 152 The strains used (Table 1) were cultured from freeze-dried stocks from the ATCC,

153 NCIMB, and the NITE Biological Resource Center (NBRC), or from live cultures on

154 slopes (strains E6 and Tk-m) or in liquid culture (Starkey strain) from the DSMZ.

- 155 Lyophilised strains were rehydrated in appropriate media (1 ml, 1 h), added to 10 ml
- 156 medium and grown at 30 °C for 5 days. Inocula (5 ml) from each culture were added
- 157 to 50 ml medium in 250 ml flasks and shaken at 30 °C. Media used for DSMZ and
- 158 NCIMB cultures was a mineral medium (Boden et al. 2008; Kelly and Wood 1998)

supplemented with 10 mM $Na_2S_2O_3$ for the initial 10 ml cultures, and with 3 mM

- 160 $K_2S_4O_6$ for the main cultures. The use of tetrathionate avoided the problem of
- 161 elemental sulfur precipitation from thiosulfate that is typical of *Thiobacillus thioparus*
- 162 cultures (Kelly 1982; Kelly et al. 2005). Three of the ATCC strains were grown on
- 163 ATCC 290 S6 medium (http://www.lgcstandards-atcc.org/Attachments/3616.pdf)

164	with tetrathionate instead of thiosulfate, but with thiosulfate for strain ATCC 23647,
165	which preferred this substrate. Organisms were harvested for DNA extraction from
166	the 50 ml cultures by centrifuging at 14,000 x g, 30 min, at 4 °C. DNA was extracted
167	from the organisms using the FastDNA® SPIN Kit for Soil (QBioGene, Cambridge,
168	UK). PCR amplification of 16S rRNA genes was by standard procedures using the
169	Lane 27f and 1492r primers (Lane et al. 1992). Sequencing (NCIMB and DSM
170	strains) used DreamTaq and the BigDye terminator kit with the 27f, 341f and 1492r
171	primers; and (ATCC strains) Platinum Taq and BigDye 3.1, with primers 27F, 770R,
172	704F and 1492R. Strains THI 111 and THI 115 were grown as described previously
173	(Katayama-Fujimura et al. 1982; Katayama et al. 1992, 1998), and their 16S rRNA
174	genes sequenced at the NBRC. Phylogenetic relationships were compared using the
175	on-line NCBI blast algorithm tools (http://www.ncbi.nlm.nih.gov/blast), and
176	construction of neighbour-joining distance trees (Fig. 1), using the CLUSTAL
177	algorithm of MEGA 5. GenBank accession numbers for the new sequences of the T .
178	thioparus strains are listed in Table 1.
179	
180	Results and Discussion
181	
182	Analysis of the 16S rRNA gene sequences of 12 strains of Thiobacillus thioparus
183	
184	The 16S rRNA gene sequences for the four examples of the Starkey strain were
185	essentially identical (Table 1, Fig. 1), and showed that the purity of these strains was
186	maintained over a long period of culture in different laboratories and maintenance in
187	the various culture collections. Similarly, strains Happold (h1), E6 (Smith and Kelly
188	1988) and Tk-m (Kanagawa and Mikami 1989) were confirmed as authentic strains of

189	<i>Thiobacillus thioparus</i> (Table 1, Fig. 1). Two strains (White 2K and strain THI 115)
190	showed lower sequence similarity to the type strain (Table 1), and appeared closer on
191	a phylogenetic tree to "Thiobacillus sajanensis" (Fig. 1). The Pankhurst T4 (p2)
192	strain formed a distinct clade with the GenBank sequences of the putative
193	Thiobacillus thioparus strains LV43 and API (Fig. 1). Two strains were clearly not T.
194	thioparus: the Pankhurst T1 and ParkerM strains showed only 83% and 85% identity
195	to the type strain (Table 1) and were indicated to be strains of Halothiobacillus and
196	Thermithiobacillus (Fig. 1). The 16S rRNA gene sequences of the type strains of T.
197	thioparus and T. denitrificans are about 98% similar, but none of the sequences
198	obtained was significantly more similar to <i>T. denitrificans</i> than was the type strain of
199	T. thioparus (Table 1, Fig. 1).
200	It is clear from our data, and the deposition history of the cultures, that the
201	definitive sequence for the 16S rRNA gene of the type strain of Thiobacillus
202	<i>thioparus</i> must be taken as that from ATCC 8158 ^T (HM173629). These data also
203	demonstrate that other culture collection examples of Thiobacillus thioparus should
204	be examined for phylogenetic identity to this type sequence. The situation identified
205	by us of some culture collection strains actually being examples of other species is
206	comparable to that revealed by an earlier study of culture collection strains of
207	Paracoccus denitrificans (Kelly et al. 2006; Rainey et al. 1999).
208	
209	Status of some earlier database 16S rRNA gene sequences for T. thioparus
210	
211	GenBank contains a sequence (M79426) for the type strain of <i>T. thioparus</i> (ATCC
212	8158 ^T), deposited in 1993 (Lane et al. 1992), and a sequence for strain LV43

213 (AF005628) from Movile Cave, Romania, isolated and analyzed by Vlasceanu et al.

214 (1997). These shared only 95.2% identity (1184/1244 aligned nucleotides) with each 215 other, and the sequence for strain LV43 (AF005628) showed only 96.7% identity 216 (1360/1406) to the newly determined sequence for the type strain (HM173629). This 217 poor match was due in part to the presence of 20 unidentified (N) nucleotides in the 218 sequence, but if the 'N' positions were replaced with the corresponding nucleotides 219 from the HM173629 sequence, the identity to HM173629 still only became 97.9%. 220 Comparison of this modified LV43 sequence with M79426 (which also contains 3 'N' 221 positions) still showed 96.5%, suggesting a low relationship between these strains at 222 the species level. The M79426 sequence showed 98.6% identity (1226/1244) to the 223 new sequence for the type strain (HM173629), confirming that M79426 can no longer 224 be accepted as representing the 16S rRNA gene of the type strain of *T. thioparus*. 225 Strain LV43 has unfortunately been lost from culture (B. Kinkle, personal 226 communication) so cannot be re-examined, but even the poor sequence available 227 indicates it to have been a strain of T. thioparus, and to share a closer identity to the 228 Pankhurst T4 strain (Fig. 1) and to the partial sequence for strain API, with which it 229 shares 97-98% identity. The Pankhurst T4 strain produced little tetrathionate when 230 cultured on thiosulfate, and increased acidity of the medium to about pH 4.4 during 231 growth on 40 mM thiosulfate, which is typical of T. thioparus. We concluded that the 232 T4 strain and strains White, LV43 and API were all very similar to T. thioparus, and 233 insufficiently different from the type strain for revision of their status without further 234 analysis.

235

236 Reassignment of *T. thioparus* strain Pankhurst T1 (NCIMB 8454) as a strain of

237 Halothiobacillus neapolitanus

238

239 This strain, originally deposited as *Thiobacillus thioparus*, was isolated from a 240 thiosulfate-oxidizing mixed culture (Pankhurst 1964). Our 16S rRNA gene sequence 241 analysis indicated it to be a strain of Halothiobacillus neapolitanus (Table 1, Fig. 1), 242 which has resulted in the NCIMB reclassifying it as a strain of that species. Its 243 physiological properties are consistent with those reported for the type species (NCIMB 8539^T). Pankhurst (1964) showed it to produce large amounts of 244 245 tetrathionate from thiosulfate, amounting to about 66% of the thiosulfate-sulfur after 246 three days, along with some formation of trithionate, but subsequently oxidized the 247 tetrathionate to sulfate, with an increase in acidity (Pankhurst 1964). These properties 248 are typical of *H. neapolitanus*, which rapidly produces tetrathionate (and trithionate) 249 both in cell suspensions and when grown in batch culture (Kelly 2008; Trudinger 250 1959, 1964). Tetrathionate production is effected by a thiosulfate-oxidizing enzyme 251 (Trudinger 1961), and the amount produced is strongly affected by environmental 252 conditions, in extreme cases resulting in virtually quantitative conversion of 253 thiosulfate to tetrathionate (Kelly 2008; Trudinger 1964). Typically, the Pankhurst T1 254 strain quantitatively converted 40 mM thiosulfate to sulfate with a drop in pH from 255 about pH 6.8 to pH 3.2, which is typical of *H. neapolitanus*. 256 257 Definitive 16S rRNA gene sequence for the type strain of *Halothiobacillus neapolitanus* strain X (NCIMB 8539^T) and comparison with existing database 258 259 sequences

260

261 The only sequence available on GenBank for this strain between 1993 and 2011 was

AH001797, which consisted of three segments, totalling only 903 bp, of which 11

263 were unidentified nucleotides. The nucleotide sequence of the authentic type strain X

264 (NCIMB 8539) was determined in order to ensure a definitive reference sequence was 265 available (JF416645; 1379 bp). Comparison, using the BLASTN algorithm, of the 266 sequences JF416645 and AH001797 showed a cumulative similarity of only 97.4% 267 (876/899 nucleotides), reflecting the relatively poor quality of the old sequence. The 268 complete genome of *H. neapolitanus* strain c2 (ATCC 23641) became available in 269 2011 (NC_013422). This strain was a derivative of the original type strain X, and 270 contained two genes for the 16S rRNA (loci Hneap_R0016 and Hneap_R0052), each 271 comprising 1524 bp. These differed from each other only by one nucleotide (G 272 instead of A at position 314 in Hneap_R0016). The newly-determined type strain 273 sequence showed similarities to Hneap R0016 and Hneap R0052 of 1379/1379 and 274 1378/1379 nucleotides, with the mismatch to Hneap_R0052 being G at position 314. 275 The JF416645 sequence was thus identical to the Hneap_R0016 gene of strain c2. 276 Comparison of the gene sequences of another authentic strain of *H. neapolitanus* 277 (strain C; DSM 581, AF173169) and of the newly-designated strain Pankhurst T1 278 (NCIMB 8454; HM173632) with that of strain X and genes Hneap R0016 and 279 Hneap R0052 of strain c2 gave sequence identities of 99.8-100%, and showed both to 280 have expressed the Hneap_R0052 gene. The GenBank database currently contains 281 sequences for five other putative strains of H. neapolitanus (EU871645, AB308268, 282 HQ693550, EU591537, AY686547), all of which are correct when compared to the 283 new type strain sequence. Three of these sequences are long (1259, 1399 and 1470 bp) 284 and show 99.3-99.6% identity to JF416645, and all three were examples of the Hneap_R0052 gene. The two shorter sequences (555 and 991 bp) shared 99.1 and 285 286 99.3% identity with the JF416645, Hneap_R0016 and Hneap_R0052 sequences, but 287 their coverage did not include the nucleotide at the 314 position of Hneap_R0016. 288 The database contains a number of other nearly complete sequences attributed to

289	strains of "Thiobacillus sp." and "Halothiobacillus sp." (e.g. AY487255, GU013549,
290	AY096035, EU912480, EF397577, FM992406), which showed 99.0-99.8% identity
291	to the type strain sequence JF4156645, and all were examples of the Hneap_R0052
292	gene.
293	The sequence of the gene from <i>H. neapolitanus</i> strain X has been adopted as the
294	reference sequence in the List of Prokaryotic Names with Standing in Nomenclature
295	(http://www.bacterio.cict.fr/h/halothiobacillus.html).
296	
297	Reassignment of T. thioparus strain ParkerM (NCIMB 8349) as a strain of
298	Thermithiobacillus
299	
300	This strain (M79) was one of several similar bacteria isolated from a corroded
301	concrete sewer, and quantitatively converted thiosulfate to tetrathionate, which was
302	apparently not oxidized to sulfate (Parker 1947; Parker and Prisk 1953). This led
303	Parker and Prisk (1953) to conclude that these strains were not actually
304	chemolithoautotrophic thiobacilli, but were more likely to be related to the
305	heterotrophic "Thiobacillus trautweinii" described by Trautwein (1921), which was
306	later reclassified as <i>Pseudomonas</i> sp. NCIMB 9549. Strain ParkerM was, however,
307	thought to be a strain of T. thioparus by K.R. Butlin and J.R. Postgate, who deposited
308	it as NCIMB 8349 in 1959 (<u>http://www.ncimb.com/results.php?parent=culture</u>). As a
309	result of our 16S rRNA gene sequence analysis strain ParkerM appeared to be only
310	the second strain of <i>Thermithiobacillus</i> in a culture collection, and has been
311	reclassified as Thermithiobacillus sp. by the NCIMB (Table 1, Fig. 1). Its
312	physiological properties are very similar to those reported for the type strain, which
313	quantitatively converted thiosulfate to tetrathionate before further oxidation to sulfate

314	(Wood and Kelly 1985, 1986). Under the conditions employed by Parker and Prisk
315	(1953), cultures on 40 mM thiosulfate rose from pH 6.6 to pH 7.5-7.8, with
316	conversion of about 92% of the thiosulfate consumed to tetrathionate. Under our
317	more favourable culture conditions, oxidation of tetrathionate to sulfate proceeded
318	with a consequent increase in acidity to about pH 5.2, which is the same as the
319	minimum of about pH 5.2 reported for the type strain provided with 10 mM
320	tetrathionate or 20 mM thiosulfate (Wood and Kelly 1985, 1986).
321	
322	Taxonomic status of the available strains of Thiobacillus denitrificans
323	
324	Since this species was established by Beijerinck (1904), numerous strains described as
325	T. denitrificans have been used in biochemical and commercial studies, but no
326	authentic strain was available at the time Hutchinson et al. (1967, 1969) began their
327	taxonomic studies, and currently only six distinct strains appear to be held in
328	international culture collections. Three of these were isolated by Hutchinson et al.
329	(1967; NCIMB 9546, 9547 and 9548 ^T), one each came from Texas soil (ATCC 25259;
330	Taylor et al. 1971), Senegalese mud (DSM 807; Baldensperger and Garcia 1975), and
331	pond water (DSM 739; H. Hippe). The type strain (NCIMB 9548 ^T ; Kelly and Wood
332	2000b) is held by at least six collections (NCIMB, ATCC, DSMZ, CIP, JCM, and
333	BCRC), and was used in the phylogenetic studies of Lane et al. (1985), and by Justin
334	and Kelly (1978). The six available strains have not been the subject of detailed
335	comparisons using modern molecular methods, except for strain ATCC 25259, for
336	which the complete genome is available (NC_007404; Beller et al. 2006). This
337	genome contains two identical copies of the 16S rRNA gene, but these show only
338	97.6% sequence identity to that of the type strain. This is comparable to the

339	difference between the distinct species, T. denitrificans and T. thioparus (Table 1),
340	which raises the possibility that the type strain and ATCC 25259 may be examples of
341	distinct nitrate-reducing species. We have included comparative 16S rRNA gene
342	sequence similarities between NC_007404 and the twelve species in Table 1, to show
343	that the similarities are only slightly different from those seen with the type species.
344	Running BLASTN searches of the GenBank database with the AJ243144 (type) and
345	the Tbd_R0009 16S rRNA gene of ATCC 25259 showed the type strain sequence to
346	share 98.8-99.5% sequence identity to Thiobacillus strain NB457 (HQ851052) and
347	two uncultured clones (HQ015463, FN436148), but the ATCC sequence showed only
348	97.2-97.6% identity to these. Conversely, the ATCC sequence showed 99.3 and
349	98.8% identity to a different uncultured clone (HQ132467 and to Thiobacillus strain
350	ME16 (EU546130), which were only 97.3% and 98.1% identical to the type sequence.
351	All other BLAST 'hits' to sequences on the database were 97.2-98.2% for both strains,
352	consistent with both types being distinct, and occurring in the natural environment.
353	These comparisons show that ATCC 25259 had no nearer neighbours with validly
354	published names than T. thioparus and T. denitrificans (type strain), but may not be
355	an example of either. This indicated that detailed molecular and physiological
356	comparisons of these strains, and with others in the culture collections and
357	laboratories is needed, as there could be as great a genetic diversity among
358	physiologically similar strains that are currently assigned to T. denitrificans as was
359	established with physiologically similar iron-oxidizing strains regarded as
360	Acidithiobacillus ferrooxidans (Amouric et al. 2011; Harrison 1982; Karavaiko et al.
361	2003; Kelly and Harrison 1989; Waltenbury et al. 2005).
362	

363 Conclusions

365	Our study has confirmed the species affiliations of a number of phenotypically similar
366	strains of Thiobacillus thioparus, but has reassigned two strains originally defined
367	solely by their physiological properties as T. thioparus to two alternative genera.
368	Based on 16S rRNA gene sequences, these alternative genera, Thermithiobacillus and
369	Halothiobacillus, are phylogenetically more remote from Thiobacillus than
370	Thiobacillus is itself, for example, from Neisseria or Escherichia (Kelly et al. 2005).
371	The phylogenetic tree (Fig. 1) showed <i>Thermithiobacillus</i> to cluster more closely with
372	Acidithiobacillus than with the other genera. Recently, in a multiprotein family
373	comparison of the genomes of 104 Gammaproteobacteria, the Acidithiobacillales
374	were concluded to comprise a group that was distinct from both the
375	Gammaproteobacteria and the Betaproteobacteria, probably having diverged after the
376	formation of the Alphaproteobacteria but before the Gammaproteobacteria-
377	Betaproteobacteria split (Williams et al. 2010). This is interesting because
378	Acidithiobacillus was originally placed in the Betaproteobacteria (Lane et al. 1992),
379	apparently lying near the Gammaproteobacteria-Betaproteobacteria root, but was
380	assigned to the Gammaproteobacteria by Kelly and Wood (2000a) in their revision of
381	the Thiobacillus genus. It may indicate that Thermithiobacillus also falls outside the
382	Gammaproteobacteria, but this can only be resolved when the genome of Th.
383	tepidarius becomes available.
384	The finding that the 16S rRNA gene sequence of the type strain of T. denitrificans
385	differs significantly from that of the ATCC 25259 strain shows the importance of
386	using the sequences of the type strains, as provided in the List of Prokaryotic Names

with Standing in Nomenclature (<u>http://www.bacterio.cict.fr/h/halothiobacillus.html</u>).

388 It has recently been argued that 16S rRNA gene sequence comparisons are 389 inadequate for the discrimination of individual species, as the genes are too highly 390 conserved (Staley 2006, 2009). The 2nd edition of Bergey's Manual of Systematic 391 *Bacteriology* (2005) was, however, constructed on the phylogenetic framework 392 provided by 16S rRNA gene sequence analysis, down to the species level. Small 393 variations in this highly conserved macromolecule have proved an immensely 394 valuable and largely reliable tool in species as well as genus discrimination, when 395 used in conjunction with phenotypic properties. Advances in molecular methods now 396 make 16S rRNA data part of an arsenal of phylogenetic tools, coupled with DNA 397 hybridization and multiple locus sequence analysis, to enable a holistic approach to 398 taxonomy. For discrimination of phenotypically similar genera, 16S rRNA gene 399 sequence analysis is still the most rapid of the powerful and reliable taxonomic tools 400 available for species separation. It potentially provides a means by which commercial 401 culture collections can assess the identities of stock cultures deposited before the 402 widespread use of molecular methods in taxonomy, and has proved useful in the cases 403 described here, and in the earlier reassessment of some Paracoccus strains in culture 404 collections (Kelly et al. 2006).

405

406 Acknowledgement

407 We are grateful to Dr Ann Wood for constructive comments on the manuscript.

408

409 **References**

410

- 411 Amouric A, Brochier-Armanet, Johnson DB, Bonnefoy V, Hallberg KB (2011)
- 412 Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli

413	supports the view that these comprise multiple species with different ferrous
414	iron oxidation pathways. Microbiol (UK) 157:111-122
415	Aroca G, Urrutia H, Núñez D, Oyarzan P, Aranciba A, Guerrero K (2007)
416	Comparison of the removal of hydrogen sulfide in biotrickling filters inoculated
417	with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J
418	Biotechnol [on-line] 10:514-520
419	Baldensperger J, Garcia JL (1975) Reduction of oxidized inorganic nitrogen
420	compounds by a new strain of Thiobacillus denitrificans. Arch Microbiol
421	103:31-36
422	Battaglia-Brunet F, El Achbouni H, Quemeneur M, Hallberg KB, Kelly DP, Joulian C
423	(2011) Proposal that the arsenite-oxidizing organisms Thiomonas cuprina and
424	"Thiomonas arsenivorans" be reclassified as strains of Thiomonas delicata. Int J
425	Syst Evol Microbiol doi:101099/ijs0023408-0 (January 7 2011)
426	Beijerinck MW (1904) Ueber die Bakterien, welche sich im Dunkeln mit Kohlensäure
427	als Kohlenstoffquelle ernähren können. Centralbl Bakteriol Parasitenkd
428	Infektionskr Hyg Abt II 11:592-599
429	Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM,
430	Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the
431	obligately chemolithotrophic, facultatively anaerobic bacterium Thiobacillus
432	denitrificans. J Bacteriol 188:1473-1488
433	Boden R, Thomas E, Savani P, Kelly DP, Wood AP (2008) Novel methylotrophic
434	bacteria isolated from the River Thames (London, UK). Environ Microbiol
435	10:3225-3236

436	Brandl H (2008) Microbial leaching of metals. In: Rehm H-J, Reed G. (eds)
437	Biotechnology: Special Processes, 2 nd edn, vol 10. Wiley-VCH Verlag GmbH,
438	Weinheim, pp 192-217
439	Chen S, Qiu, G-Z, Qin W-Q, Lan Z-Y (2008) Bioleaching of sphalerite by
440	Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K
441	medium modified with pyrrhotite. J Cent South Univ Technol 15:503-507
442	Chen Y, Wu Liqin, Boden R, Hillebrand A, Kumarasan D, Moussard H, Baciu M, Lu
443	Y, Murrell JC (2009) Life without light: microbial diversity and evidence of
444	sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J
445	3:1093-1104
446	Ehrlich HL, Brierley CL (eds) (1990). Microbial Mineral Recovery. New York,
447	McGraw-Hill, Inc., 454 pp
448	Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid
449	mine drainage prevention. Crit Revs Environ Sci Technol 25:141-199
450	Harrison AP (1982) Genomic and physiological diversity amongst strains of
451	Thiobacillus ferroxidans, and genomic comparison with Thiobacillus
452	thiooxidans. Arch Microbiol 131:68-76
453	Hiraishi A, Imhoff JF (2005) Genus II. Acidiphilium Harrison 1981. In: Brenner DJ,
454	Krieg NR, Staley JT, Garrity GM (eds) Bergey's Manual of Systematic
455	Bacteriology, 2 nd edn, vol 2 part C. Springer, New York, pp 54-62
456	Hutchinson M, Johnstone KI, White D (1965) The taxonomy of certain thiobacilli. J
457	Gen Microbiol 41:357-366
458	Hutchinson M, Johnstone KI, White D (1966) Taxonomy of the acidophilic thiobacilli.
459	J Gen Microbiol 44:373-381

460	Hutchinson M, Johnstone KI, White D (1967) Taxonomy of anaerobic thiobacilli. J
461	Gen Microbiol 47:17-23
462	Hutchinson M, Johnstone KI, White D (1969) Taxonomy of the genus Thiobacillus:
463	outcome of numerical taxonomy applied to the group as a whole. J Gen
464	Microbiol 57:397-410
465	Justin P, Kelly DP (1978) Growth kinetics of Thiobacillus denitrificans
466	accompanying the transition from aerobic and anaerobic growth. J Gen
467	Microbiol 107:123-130
468	Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures
469	and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13-19
470	Kanagawa T, Mikami E (1989) Removal of methanethiol, dimethyl sulphide,
471	dimethyl disulphide, and hydrogen sulphide from contaminated air by
472	Thiobacillus thioparus Tk-m. Appl Environ Microbiol 55:555-558
473	Karavaiko GI, Turova TP, Kondrateva TF, Lysenko AM, Kolganova TV, Ageeva SN,
474	Luntyan LM, Pivovarova TA (2003) Phylogenetic heterogeneity of the species
475	Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53:113-119
476	Katayama Y, Kuraishi H (1978) Characteristics of Thiobacillus thioparus and its
477	thiocyanate assimilation. Can J Microbiol 24:804-810
478	Katayama-Fujimura Y, Tsuzaki N, Kuraishi, N (1982) Ubiquinone, fatty acid and
479	DNA base composition determination as a guide to the taxonomy of the genus
480	Thiobacillus. J Gen Microbiol 128:1599-1611
481	Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas
482	delicata (formerly Thiobacillus delicatus) as a distinct species of the genus
483	Thiomonas Moreira and Amils 1997 with comments on some species currently
484	assigned to the genus. Int J Syst Evol Microbiol 56:2553-2557

485	Katayama Y, Narahara Y, Inoue Y, Amano F, Kanagawa T, Kuraishi H (1992) A
486	thiocyanate hydrolase of Thiobacillus thioparus. J Biol Chem 267:9170-9175
487	Katayama Y, Matsushita Y, Kaneko M, Kondo M, Mizuno T, Nyunoya H (1998)
488	Cloning of genes coding for the three subunits of thiocyanate hydrolase of
489	Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile
490	hydratase. J Bacteriol 180:2583-2589
491	Kelly, D.P. (1982) Biochemistry of the chemolithotrophic oxidation of inorganic
492	sulphur. Phil. Trans. R. Soc. Lond. B 298, 499-528
493	Kelly DP (1985) Metallgewinnung aus Erzen durch bakterielles Auslagen:
494	gegenwärtiger Stand und zukünftige Aufgaben. In: Küster E (ed) Mikrobiologie
495	und Umweltschutz, Wissenschaftliche Buchgesellschaft, Darmstadt, pp. 161-182
496	Kelly DP (2008) Stable isotope fractionation and discrimination between the sulfur
497	atoms of thiosulfate during oxidation by Halothiobacillus neapolitanus. FEMS
498	Microbiol Lett 282:299-308
499	Kelly DP (2010) Global consequences of the microbial production and consumption
500	of inorganic and organic sulfur compounds. In: Timmis KN (ed) Microbiology
501	of Hydrocarbons, Oils, Lipids. Springer, Heidelberg, chapter 53, pp 3087-3095
502	Kelly DP, Harrison AP (1989) Genus Thiobacillus Beijerinck 1904. In: Staley JT,
503	Bryant MP, Pfennig N, Garrity GM (eds) Bergey's Manual of Systematic
504	Bacteriology, 1 st edn, vol 3. Williams & Wilkins, Baltimore, pp 1842-1858
505	Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage RS, Atlas R,
506	Stahl D, Geese G, Sayler G. (eds) Techniques in Microbial Ecology. Oxford
507	University Press, New York, pp 31-57

508	Kelly DP, Wood AP (2000a) Reclassification of some species of <i>Thiobacillus</i> to the
509	newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov.
510	and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511-516
511	Kelly DP, Wood AP (2000b) Confirmation of Thiobacillus denitrificans as a species
512	of the genus <i>Thiobacillus</i> , in the β -subclass of the <i>Proteobacteria</i> , with strain
513	NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50:547-550
514	Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of
515	Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α -
516	subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797-1802
517	Kelly DP, Wood AP, Stackebrandt E (2005) Genus II Thiobacillus Beijerinck 1904.
518	In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's Manual of
519	Systematic Bacteriology, 2 nd edn, vol 2 part C. Springer, New York, pp 764-769
520	Kelly DP, Euzéby JP, Goodhew CF, Wood AP (2006) Redefining Paracoccus
521	denitrificans and Paracoccus pantotrophus and the case for a reassessment of
522	the strains held by international culture collections. Int J Syst Evol Microbiol
523	56:2495-2500
524	Kelly DP, Uchino Y, Huber H, Amils R, Wood AP (2007) Reassessment of the
525	phylogenetic relationships of Thiomonas cuprina. Int J Syst Evol Microbiol.
526	56:2720-2724
527	Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the
528	genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol
529	163:75-81
530	Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992)
531	Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J
532	Bacteriol 174:269-278

- 533 Mudd GM, Patterson J (2010) Continuing pollution from the Rum Jungle U-Cu
- 534 project: a critical evaluation of environmental monitoring and rehabilitation.
- 535 Environ Pollution 158: 1252-1260
- 536 Pankhurst ES (1964) Polarographic evidence for the production of polythionates
- 537 during the bacterial oxidation of thiosulphate. J Gen Microbiol 34:427-439
- 538 Parker CD (1945) The isolation of a species of bacterium associated with the
- 539 corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Aust
- 540 J Exp Biol Med Sci 23, 81-90
- 541 Parker CD (1947) Species of sulphur bacteria associated with the corrosion of
 542 concrete. Nature 159:439-440
- 543 Parker CD (1957) Genus V. Thiobacillus Beijerinck 1904. In: Breed RS, Murray RGE,
- 544 Smith PH (Eds) Bergey's Manual of Determinative Bacteriology, 7th edn.
- 545 Williams & Wilkins, Baltimore, pp 83-88
- 546 Parker CD, Prisk J (1953) The oxidation of inorganic compounds of sulphur by

547 various sulphur bacteria. J Gen Microbiol 8:344-364

- 548 Parker CD, Jackson D (1965) The microbial flora of concrete surfaces. In: Hydrogen
- 549 Sulfide Corrosion of Concrete Sewers, Melbourne and Metropolitan Board of
- 550 Works, Melbourne, Australia, Technical Paper No. A8, part 6, pp.1-29
- 551 Rainey FA, Kelly DP, Stackebrandt E, Burghardt J, Hiraishi A, Katayama Y, Wood
- 552 AP (1999) A re-evaluation of the taxonomy of *Paracoccus denitrificans* and a
- 553 proposal for the combination *Paracoccus pantotrophus* comb. nov. Int J Syst
- 554 Bacteriol 49:645–651
- 555 Ramirez M, Gomez JM, Aroca G, Cantero D (2009) Removal of hydrogen sulfide by
- 556 immobilized *Thiobacillus thioparus* in a biotrickling filter packed with
- 557 polyurethane foam. Bioresour Technol 100:4989-4895

- 558 Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Microbiol 56:65-
- 559

- 560 Smith NA, Kelly DP (1988) Isolation and physiological characterization of
- autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of
- 562 energy. J Gen Microbiol 134:1407-1417
- 563 Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic
- species concept. Phil Trans R Soc B 361:1899-1909
- 565 Staley JT (2009) The phylogenomic species concept. Microbiology Today (SGM),
- 566 May 2009, pp. 80-83
- 567 Starkey RL (1934) Cultivation of organisms concerned in the oxidation of thiosulfate.
- 568 J Bacteriol 28:365-386
- 569 Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by *Thiobacillus*
- 570 *denitrificans*: desulfurization of natural gas. Biotechnol Bioeng 29:49-257
- 571 Taylor, BF, Hoare DS, Hoare SL (1971) *Thiobacillus denitrificans* as an obligate
 572 chemolithotroph. Arch Microbiol 78:193-204
- 573 Trautwein K (1921) Zur Physiologie und Morphologie der Thionsäurebakterien.
- 574 Zentralbl Bakteriol Parasitenkd Infektionskr Hyg, Abt II, 53:513-548
- 575 Trudinger PA (1959) Initial products of thiosulphate oxidation by *Thiobacillus* X.
- 576 Biochim Biophys Acta 31:270-272
- 577 Trudinger PA (1961) Thiosulphate oxidation and cytochromes in *Thiobacillus* X. 2.
- 578 Thiosulphate-oxidizing enzyme. Biochem J 78:680-686
- 579 Trudinger PA (1964) Oxidation of thiosulphate by intact cells of *Thiobacillus X*:
- 580 effects of some experimental conditions. Aust J Biol Sci 17:738-751

- 581 Vishniac WV (1974) Genus I. Thiobacillus Beijerinck 1904. In: Buchanan RE,
- Gibbons NE (eds) Bergey's Manual of Determinative Bacteriology, 8th edn. 582
- 583 Williams & Wilkins, Baltimore, pp 456-461
- 584 Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of *Thiobacillus thioparus*
- 585 LV43 and its distribution in a chemoautotrophically based groundwater
- 586 ecosystem. Appl Environ Microbiol 63:3123-3127
- Waltenbury, DR, Leduc LG, Ferroni GD (2005) The use of RAPD genomic 587
- 588 fingerprinting to study relatedness in strains of Acidithiobacillus ferrooxidans. J 589 Microbiol Meth 62:103-112
- 590 Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM,
- 591 Dickerman AW (2010) Phylogeny of Gammaproteobaceria. J Bacteriol 592

192:2305-2314

- 593 Wood AP, Kelly DP (1985) Physiological characteristics of a new thermophilic
- 594 obligately chemolithotrophic *Thiobacillus* species, *Thiobacillus tepidarius*. Int J 595 Syst Bacteriol 35:434-437
- 596 Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated
- 597 moderately thermophilic, obligately autotrophic *Thiobacillus tepidarius*. Arch 598 Microbiol 144:71-77
- 599 Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus
- 600 sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian
- 601 hypersaline lake. Arch Microbiol 156:277-280
- 602 Zhang Z, Lei Z, He X, Zhang Z, Yang Y, Sugiura N (2009) Nitrate removal by
- 603 Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers. J
- 604 Hazardous Materials 163:1090-1095

608 Legend to Figure 1

610	Fig. 1 Neighbour-joining distance tree, based on nearly complete 16S rRNA
611	gene sequences, aligned using the CLUSTAL algorithm of MEGA 5, showing the
612	position of 12 strains originally received as Thiobacillus thioparus, compared to their
613	phylogenetic neighbours. Two of these were reassigned to different genera: NCIMB
614	8454 to Halothiobacillus neapolitanus, and NCIMB 8349 to Thermithiobacillus as a
615	result of this study. The reference sequence for Halothiobacillus neapolitanus
616	NCIMB 8539 ^T was also newly obtained in this study, for comparison with that from
617	the complete genome of strain c2 (ATCC 23641; NC_013422), which is a descendent
618	of the type strain X (NCIMB 8539^{T}). The sequence previously available for the type
619	strain (AH001797) is only partial and is segmented. The sequence of Paracoccus
620	denitrificans ATCC 17741 ^T (Alphaproteobacteria) was used as outgroup. Strains
621	newly sequenced in this study are shown in bold font. Numbers on branch nodes are
622	bootstrap values above 70% (from 1000 resamplings). Bar, one estimated substitution
623	per 100 base positions.
624	