73 research outputs found

    Use of an integrative soil health test for evaluation of soil management impacts

    Get PDF
    Understanding the response of soil quality indicators to changes in management practices is essential for sustainable land management. Soil quality indicators were measured for 2 years under established experiments with varying management histories and durations at four locations in New York State. The Willsboro (clay loam) and Aurora (silt loam) experiments were established in 1992, comparing no-till (NT) to plow-till (PT) management under corn (Zea mays L.)-soybean (Glycine max L.) rotation. The Chazy (silt loam) trial was established in 1973 as a factorial experiment comparing NT versus PT and the crop harvesting method (corn silage versus corn grain). The Geneva (silt loam) experiment was established in 2003 with vegetable rotations with and without intervening soil building crops, each under three tillage methods (NT, PT and zone-till (ZT)) and three cover cropping systems (none, rye and vetch). Physical indicators measured were wet aggregate stability (WAS), available water capacity (AWC) and surface hardness (SH) and subsurface hardness (SSH). Soil biological indicators included organic matter (OM), active carbon (AC), potentially mineralizable nitrogen (PMN) and root disease potential (RDP). Chemical indicators included pH, P, K, Mg, Fe, Mn and Zn. Results from the Willsboro and Aurora sites showed significant tillage effects for several indicators including WAS, AWC, OM, AC, pH, P, K, Mg, Fe and Mn. Generally, the NT treatment had better indicator values than the PT treatments. At the Chazy site, WAS, AWC, OM, AC, pH, K and Mg showed significant differences for tillage and/or harvest method, also with NT showing better indicator values compared to PT and corn grain better than corn silage. Aggregate stability was on average 2.5 times higher in NT compared to PT treatments at Willsboro, Aurora and Chazy sites. OM was also 1.2, 1.1 and 1.5 times higher in NT compared to PT treatments at Willsboro, Aurora and Chazy sites, respectively. At the Geneva site WAS, SH, AC, PMN, pH, P, K and Zn showed significant tillage effects. The cover crop effect was only significant for SH and PMN measurements. Indicators that gave consistent performance across locations included WAS, OM and AC, while PMN and RDP were site and management dependent. The composite soil health index (CSHI) significantly differentiated between contrasting management practices. The CSHI for the Willsboro site was 71% for NT and 59% for PT, while at the Aurora site it was 61% for NT and 48% for PT after 15 years of tillage treatment

    Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach:Synthesis of Sustainable Biobased Latexes

    Get PDF
    A green surfactant-free one-pot horseradish peroxidase-mediated enzymatic polymerization is successfully applied to produce a sustainable and thermally stable biobased high average molar mass poly(α-methylene-γ-butyrolactone) (PMBL) at ambient conditions in water for the first time. The initiation step required only very low concentrations of hydrogen peroxide and 2,4-pentanedione water-soluble initiator to generate the keto-enoxy radicals responsible for forming the primary latex particles. The polymer nanoparticles can be seen as monodisperse, and the biobased latexes are colloidally stable and likely stabilized by the adsorption of 2,4-pentanedione moieties on the particle surfaces. Polymerizations in air produced a 98% yield of PMBL after only 3 h, highlighting the relevance of molecular oxygen. An array of characterization techniques such as dynamic light scattering (DLS), Fourier transform infrared (FTIR), 1H, 13C, and HSQC two-dimensional (2D) nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and size-exclusion chromatography (SEC) are used to confirm the properties of the synthesized latexes. The PMBL exhibited high thermal stability, with only a 5% weight loss at 340 °C and a glass-transition temperature of 200 °C, which is double that of polymethyl methacrylate (PMMA). This research provides an interesting pathway for the synthesis of sustainable biobased latexes via enzymes in a green environment using just water at ambient conditions and the potential use of the polymer in high-temperature applications.</p

    Surfactant-Free Peroxidase-Mediated Enzymatic Polymerization of a Biorenewable Butyrolactone Monomer via a Green Approach:Synthesis of Sustainable Biobased Latexes

    Get PDF
    A green surfactant-free one-pot horseradish peroxidase-mediated enzymatic polymerization is successfully applied to produce a sustainable and thermally stable biobased high average molar mass poly(α-methylene-γ-butyrolactone) (PMBL) at ambient conditions in water for the first time. The initiation step required only very low concentrations of hydrogen peroxide and 2,4-pentanedione water-soluble initiator to generate the keto-enoxy radicals responsible for forming the primary latex particles. The polymer nanoparticles can be seen as monodisperse, and the biobased latexes are colloidally stable and likely stabilized by the adsorption of 2,4-pentanedione moieties on the particle surfaces. Polymerizations in air produced a 98% yield of PMBL after only 3 h, highlighting the relevance of molecular oxygen. An array of characterization techniques such as dynamic light scattering (DLS), Fourier transform infrared (FTIR), 1H, 13C, and HSQC two-dimensional (2D) nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and size-exclusion chromatography (SEC) are used to confirm the properties of the synthesized latexes. The PMBL exhibited high thermal stability, with only a 5% weight loss at 340 °C and a glass-transition temperature of 200 °C, which is double that of polymethyl methacrylate (PMMA). This research provides an interesting pathway for the synthesis of sustainable biobased latexes via enzymes in a green environment using just water at ambient conditions and the potential use of the polymer in high-temperature applications.</p

    Characteristics and time course of acute and chronic myocardial lesion formation after electroporation ablation in the porcine model

    Get PDF
    Introduction: Electroporation ablation creates deep and wide myocardial lesions. No data are available on time course and characteristics of acute lesion formation. Methods: For the acute phase of myocardial lesion development, seven pigs were investigated. Single 200 J applications were delivered at four different epicardial right ventricular sites using a linear suction device, yielding a total of 28 lesions. Timing of applications was designed to yield lesions at seven time points: 0, 10, 20, 30, 40, 50, and 60 min, with four lesions per time point. After killing, lesion characteristics were histologically investigated. For the chronic phase of myocardial lesion development, tissue samples were used from previously conducted studies where tissue was obtained at 3 weeks and 3 months after electroporation ablation. Results: Acute myocardial lesions induce a necrosis pattern with contraction band necrosis and interstitial edema, immediately present after electroporation ablation. No further histological changes such as hemorrhage or influx of inflammatory cells occurred in the first hour. After 3 weeks, the lesions consisted of sharply demarcated loose connective tissue that further developed to more fibrotic scar tissue after 3 months without additional changes. Within the scar tissue, arteries and nerves were unaffected. Conclusion: Electroporation ablation immediately induces contraction band necrosis and edema without additional tissue changes in the first hour. After 3 weeks, a sharply demarked scar has been developed that remains stable during follow-up of 3 months. This is highly relevant for clinical application of electroporation ablation in terms of the electrophysiological endpoint and waiting period after ablation

    Multielectrode Contact Measurement Can Improve Long-Term Outcome of Pulmonary Vein Isolation Using Circular Single-Pulse Electroporation Ablation

    Get PDF
    Background: Irreversible electroporation (IRE) ablation is generally performed with multielectrode catheters. Electrode-tissue contact is an important predictor for the success of pulmonary vein (PV) isolation; however, contact force is difficult to measure with multielectrode ablation catheters. In a preclinical study, we assessed the feasibility of a multielectrode impedance system (MEIS) as a predictor of long-term success of PV isolation. In addition, we present the first-in-human clinical experience with MEIS. Methods: In 10 pigs, one PV was ablated based on impedance (MEIS group), and the other PV was solely based on local electrogram information (EP group). IRE ablations were performed at 200 J. After 3 months, recurrence of conduction was assessed. Subsequently, in 30 patients undergoing PV isolation with IRE, MEIS was evaluated and MEIS contact values were compared to local electrograms. Results: In the porcine study, 43 IRE applications were delivered in 19 PVs. Acutely, no reconnections were observed in either group. After 3 months, 0 versus 3 (P=0.21) PVs showed conduction recurrence in the MEIS and EP groups, respectively. Results from the clinical study showed a significant linear relation was found between mean MEIS value and bipolar dV/dt (r2=0.49, P<0.001), with a slope of 20.6 mV/s per Ohm. Conclusions: Data from the animal study suggest that MEIS values predict effective IRE applications. For the long-term success of electrical PV isolation with circular IRE applications, no significant difference in efficacy was found between ablation based on the measurement of electrode interface impedance and ablation using the classical EP approach for determining electrode-tissue contact. Experiences of the first clinical use of MEIS were promising and serve as an important basis for future research

    Mechanical characterization of thrombi retrieved with endovascular thrombectomy in patients with acute ischemic stroke

    Get PDF
    Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness. Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (E-t75) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and E-t75 with univariable and multivariable linear mixed regression. Results: Median E-t75 was 560 (interquartile range, 393-1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased E-t75 (a beta, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased E-t75% (a beta, -9 [95% CI, -5 to -13]) kPa. We found no association between leukocytes and E-t75. High platelet values were strongly associated with increased E-t75 (a beta, 56 [95% CI, 38-73]). Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.Neuro Imaging Researc

    Predicting outcomes in rheumatoid arthritis related interstitial lung disease

    Get PDF
    Aims: To compare radiology-based prediction models in rheumatoid arthritis-related interstitial lung disease (RA-ILD) to identify patients with a progressive fibrosis phenotype.Methods: RAILD patients had CTs scored visually and by CALIPER and forced vital capacity (FVC) measurements. Outcomes were evaluated using three techniques: 1.Scleroderma system evaluating visual ILD extent and FVC values; 2.Fleischer Society IPF diagnostic guidelines applied to RAILD; 3.CALIPER scores of vessel-related structures (VRS). Outcomes were compared to IPF patients.Results: On univariable Cox analysis, all three staging systems strongly predicted outcome: Scleroderma System:HR=3.78, p=9×10-5; Fleischner System:HR=1.98, p=2×10-3; 4.4% VRS threshold:HR=3.10, p=4×10-4 When the Scleroderma and Fleischner Systems were combined, termed the Progressive Fibrotic System (C-statistic=0.71), they identified a patient subset (n=36) with a progressive fibrotic phenotype and similar 4-year survival to IPF.On multivariable analysis, with adjustment for patient age, gender and smoking status, when analysed alongside the Progressive Fibrotic System, the VRS threshold of 4.4% independently predicted outcome (Model C-statistic=0.77).Conclusions: The combination of two visual CT-based staging systems identified 23% of an RAILD cohort with an IPF-like progressive fibrotic phenotype. The addition of a computer-derived VRS threshold further improved outcome prediction and model fit, beyond that encompassed by RAILD measures of disease severity and extent
    • 

    corecore