73 research outputs found

    Two Brothers with Skewed Thiopurine Metabolism in Ulcerative Colitis Treated Successfully with Allopurinol and Mercaptopurine Dose Reduction

    Get PDF
    Thiopurine therapy effectively maintains remission in inflammatory bowel disease. However, many patients are unable to achieve optimum benefits from azathioprine or 6-mercaptopurine because of undesirable metabolism related to high thiopurine methyltransferase (TPMT) activity characterized by hepatic transaminitis secondary to increased 6-methylmercaptopurine (6-MMP) production and reduced levels of therapeutic 6-thioguanine nucleotide (6-TGN). Allopurinol can optimize this skewed metabolism. We discuss two brothers who were both diagnosed with ulcerative colitis (UC). Their disease remained active despite oral and topical mesalamines. Steroids followed by 6-mercaptopurine (MP) were unsuccessfully introduced for both patients and both were found to have high 6-MMP and low 6-TGN levels, despite normal TMPT enzyme activity, accompanied by transaminitis. Allopurinol was introduced in combination with MP dose reduction. For both brothers addition of allopurinol was associated with successful remission and optimized MP metabolites. These siblings with active UC illustrate that skewed thiopurine metabolism may occur despite normal TPMT enzyme activity and can lead to adverse events in the absence of disease control. We confirm previous data showing that addition of allopurinol can reverse this skewed metabolism, and reduce both hepatotoxicity and disease activity, but we now also introduce the concept of a family history of preferential MP metabolism as a clue to effective management for other family members

    Cancer pharmacogenetics

    Get PDF
    The large number of active combination chemotherapy regimens for most cancers has led to the need for better information to guide the \u27standard\u27 treatment for each patient. In an attempt to individualise therapy, pharmacogenetics and pharmacogenomics (a polygenic approach to pharmacogenetic studies) encompass the search for answers to the hereditary basis for interindividual differences in drug response. This review will focus on the results of studies assessing the effects of polymorphisms in drug-metabolising enzymes and drug targets on the toxicity and response to commonly used chemotherapy drugs. In addition, the need for polygenic pharmacogenomic strategies to identify patients at risk for adverse drug reactions will be highlighted

    Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene

    Get PDF
    5-fluorouracil pharmacokinetics, dihydropyrimidine dehydrogenase-activity and DNA sequence analysis were compared between a patient with extreme 5-fluorouracil induced toxicity and six control patients with normal 5-fluorouracil related symptoms. Patients were treated for colorectal cancer and received chemotherapy consisting of leucovorin 20 mg m−2 plus 5-fluorouracil 425 mg m−2. Blood sampling was carried out on day 1 of the first cycle. The 5-fluorouracil area under the curve0→3h in the index patient was 24.1 mg h l−1 compared to 9.8±3.6 (range 5.4–15.3) mg h l−1 in control patients. The 5-fluorouracil clearance was 520 ml min−1 vs 1293±302 (range 980–1780) ml min−1 in controls. The activity of dihydropyrimidine dehydrogenase in mononuclear cells was lower in the index patient (5.5 nmol mg h−1) compared to the six controls (10.3±1.6, range 8.0–11.7 nmol mg h−1). Sequence analysis of the dihydropyrimidine dehydrogenase gene revealed that the index patient was heterozygous for a IVS14+1G>A point mutation. Our results indicate that the inactivation of one dihydropyrimidine dehydrogenase allele can result in a strong reduction in 5-fluorouracil clearance, causing severe 5-fluorouracil induced toxicity

    Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (<it>DPYD</it>).</p> <p>Methods</p> <p>In this study, we evaluated <it>DPYD </it>promoter methylation through quantitative methylation-specific PCR and screened <it>DPYD </it>for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. <it>DPYD </it>promoter methylation was also assessed in tumor tissue from 29 patients</p> <p>Results</p> <p>Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, <it>DPYD </it>promoter methylation and large <it>DPYD </it>intragenic rearrangements were absent in all cases analyzed.</p> <p>Conclusions</p> <p>Our results indicate that <it>DPYD </it>promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity.</p

    Unfavourable expression of pharmacologic markers in mucinous colorectal cancer

    Get PDF
    Patients with mucinous colorectal cancer generally have worse prognoses than those with the nonmucinous variety. The reason for this disparity is unclear, but may result from a differential response to adjuvant chemotherapy. We examined known molecular markers for response to common chemotherapy in these two histological subtypes. In all, 21 patients with mucinous and 30 with nonmucinous Dukes C colorectal cancer were reviewed for demographic data and outcome. Total RNA from the tumours and adjacent normal mucosa was isolated and reverse transcribed. Quantitative expression levels of drug pathway genes were determined using TaqMan RT–PCR (5-fluorouracil (5-FU): TYMS, DPYD, ECGF1; oxaliplatin: GSTP1 (glutathione S-transferase pi), ERCC1 and 2; irinotecan: ABCB1, ABCG2, CYP3A4, UGT1A1, CES2, TOP1). Mucinous tumours significantly overexpressed both TYMS and GSTP1 relative to nonmucinous tumours and patient-matched normal mucosa. No significant differences in expression of the remaining markers were found. Mean follow-up was 20 months; 17 patients had recurrent disease. Among patients receiving 5-FU, those with mucinous tumours experienced shorter disease-free survival (DFS) than those with nonmucinous tumours (median DFS 13.8 vs 46.5 months, P=0.053). Mucinous colorectal cancer overexpresses markers of resistance to 5-FU and oxaliplatin. Likewise, DFS may be decreased in patients with mucinous tumours who receive 5-FU. The presence of mucin should be carefully evaluated in developmental trials of new agents for treating colorectal cancer

    Strong Association of a Common Dihydropyrimidine Dehydrogenase Gene Polymorphism with Fluoropyrimidine-Related Toxicity in Cancer Patients

    Get PDF
    variations associated with enhanced drug toxicity. = 0.001; the attributable risk was 56.9%. Comparing tumor-type matched sets of samples, correlation of c.496A>G with toxicity was particularly present in patients with gastroesophageal and breast cancer, but did not reach significance in patients with colorectal malignancies. polymorphism strongly contributes to the occurrence of fluoropyrimidine-related drug adverse effects. Carriers of this variant could benefit from individual dose adjustment of the fluoropyrimidine drug or alternate therapies

    Lung Microbiota Changes Associated with Chronic Pseudomonas aeruginosa Lung Infection and the Impact of Intravenous Colistimethate Sodium

    Get PDF
    Exacerbations associated with chronic lung infection with Pseudomonas aeruginosa are a major contributor to morbidity, mortality and premature death in cystic fibrosis. Such exacerbations are treated with antibiotics, which generally lead to an improvement in lung function and reduced sputum P. aeruginosa density. This potentially suggests a role for the latter in the pathogenesis of exacerbations. However, other data suggesting that changes in P. aeruginosa sputum culture status may not reliably predict an improvement in clinical status, and data indicating no significant changes in either total bacterial counts or in P. aeruginosa numbers in sputum samples collected prior to pulmonary exacerbation sheds doubt on this assumption. We used our recently developed lung segmental model of chronic Pseudomonas infection in sheep to investigate the lung microbiota changes associated with chronic P. aeruginosa lung infection and the impact of systemic therapy with colistimethate sodium (CMS).We collected protected specimen brush (PSB) samples from sheep (n = 8) both prior to and 14 days after establishment of chronic local lung infection with P aeruginosa. Samples were taken from both directly infected lung segments (direct) and segments spatially remote to such sites (remote). Four sheep were treated with daily intravenous injections of CMS between days 7 and 14, and four were treated with a placebo. Necropsy examination at d14 confirmed the presence of chronic local lung infection and lung pathology in every direct lung segment. The predominant orders in lung microbiota communities before infection were Bacillales, Actinomycetales and Clostridiales. While lung microbiota samples were more likely to share similarities with other samples derived from the same lung, considerable within- and between-animal heterogeneity could be appreciated. Pseudomonadales joined the aforementioned list of predominant orders in lung microbiota communities after infection. Whilst treatment with CMS appeared to have little impact on microbial community composition after infection, or the change undergone by communities in reaching that state, when Gram negative organisms (excluding Pseudomonadales) were considered together as a group there was a significant decrease in their relative proportion that was only observed in the sheep treated with CMS. With only one exception the reduction was seen in both direct and remote lung segments. This reduction, coupled with generally increasing or stable levels of Pseudomonadales, meant that the proportion of the latter relative to total Gram negative bacteria increased in all bar one direct and one remote lung segment.The proportional increase in Pseudomonadales relative to other Gram negative bacteria in the lungs of sheep treated with systemic CMS highlights the potential for such therapies to inadvertently select or create a niche for bacteria seeding from a persistent source of chronic infection

    Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment

    Get PDF
    Variation in the human genome is a most important cause of variable response to drugs and other xenobiotics. Susceptibility to almost all diseases is determined to some extent by genetic variation. Driven by the advances in molecular biology, pharmacogenetics has evolved within the past 40 years from a niche discipline to a major driving force of clinical pharmacology, and it is currently one of the most actively pursued disciplines in applied biomedical research in general. Nowadays we can assess more than 1,000,000 polymorphisms or the expression of more than 25,000 genes in each participant of a clinical study – at affordable costs. This has not yet significantly changed common therapeutic practices, but a number of physicians are starting to consider polymorphisms, such as those in CYP2C9, CYP2C19, CYP2D6, TPMT and VKORC1, in daily medical practice. More obviously, pharmacogenetics has changed the practices and requirements in preclinical and clinical drug research; large clinical trials without a pharmacogenomic add-on appear to have become the minority. This review is about how the discipline of pharmacogenetics has evolved from the analysis of single proteins to current approaches involving the broad analyses of the entire genome and of all mRNA species or all metabolites and other approaches aimed at trying to understand the entire biological system. Pharmacogenetics and genomics are becoming substantially integrated fields of the profession of clinical pharmacology, and education in the relevant methods, knowledge and concepts form an indispensable part of the clinical pharmacology curriculum and the professional life of pharmacologists from early drug discovery to pharmacovigilance
    corecore