62 research outputs found

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation

    Get PDF
    We present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified SNe Ia from the first 3 years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.017 < z < 0.849. We combine the DES-SN sample with an external sample of 122 low-redshift (z < 0.1) SNe Ia, resulting in a "DES-SN3YR" sample of 329 SNe Ia. Our cosmological analyses are blinded: after combining our DES-SN3YR distances with constraints from the Cosmic Microwave Background, our uncertainties in the measurement of the dark energy equation-of-state parameter, w, are 0.042 (stat) and 0.059 (stat+syst) at 68% confidence. We provide a detailed systematic uncertainty budget, which has nearly equal contributions from photometric calibration, astrophysical bias corrections, and instrumental bias corrections. We also include several new sources of systematic uncertainty. While our sample is less than one-third the size of the Pantheon sample, our constraints on w are only larger by 1.4×, showing the impact of the DES-SN Ia light-curve quality. We find that the traditional stretch and color standardization parameters of the DES-SNe Ia are in agreement with earlier SN Ia samples such as Pan-STARRS1 and the Supernova Legacy Survey. However, we find smaller intrinsic scatter about the Hubble diagram (0.077 mag). Interestingly, we find no evidence for a Hubble residual step (0.007 ± 0.018 mag) as a function of host-galaxy mass for the DES subset, in 2.4σ tension with previous measurements. We also present novel validation methods of our sample using simulated SNe Ia inserted in DECam images and using large catalog-level simulations to test for biases in our analysis pipelines

    Mitochondrial uncoupler SHC517 reverses obesity in mice without affecting food intake.

    Full text link
    AimsMitochondrial uncouplers decrease caloric efficiency and have potential therapeutic benefits for the treatment of obesity and related metabolic disorders. Herein we investigate the metabolic and physiologic effects of a recently identified small molecule mitochondrial uncoupler named SHC517 in a mouse model of diet-induced obesity.MethodsSHC517 was administered as an admixture in food. The effect of SHC517 on in vivo energy expenditure and respiratory quotient was determined by indirect calorimetry. A dose-finding obesity prevention study was performed by starting SHC517 treatment concomitant with high fat diet for a period of 12 days. An obesity reversal study was performed by feeding mice western diet for 4 weeks prior to SHC517 treatment for 7 weeks. Biochemical assays were used to determine changes in glucose, insulin, triglycerides, and cholesterol. SHC517 concentrations were determined by mass spectrometry.ResultsSHC517 increased lipid oxidation without affecting body temperature. SHC517 prevented diet-induced obesity when administered at 0.05% and 0.1% w/w in high fat diet and reversed established obesity when tested at the 0.05% dose. In the obesity reversal model, SHC517 restored adiposity to levels similar to chow-fed control mice without affecting food intake or lean body mass. SHC517 improved glucose tolerance and fasting glucose levels when administered in both the obesity prevention and obesity reversal modes.ConclusionsSHC517 is a mitochondrial uncoupler with potent anti-obesity and insulin sensitizing effects in mice. SHC517 reversed obesity without altering food intake or compromising lean mass, effects that are highly sought-after in anti-obesity therapeutics
    corecore