206 research outputs found

    Epithelial and stromal remodelling following femtosecond laser–assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus

    Get PDF
    The purpose of this study was to evaluate corneal epithelium and stromal remodelling with anterior segment optical coherence tomography in patients who have undergone stromal lenticule addition keratoplasty (SLAK) for advanced keratoconus. This was a prospective non-comparative observational study. Fifteen eyes of 15 patients with advanced keratoconus underwent implantation with a cadaveric, donor negative meniscus-shaped intrastromal lenticule, produced with a femtosecond laser, into a stromal pocket dissected in the recipient cornea at a depth of 120 μm. Simulated keratometry, central corneal thickness (CTT), corneal thinnest point (CTP), central epithelial thickness (CET), central and peripheral lenticule thickness, anterior and posterior stromal thickness were measured. Regional central corneal epithelial thickness (CET) and variations in the inner annular area (IAT) and outer annular area (OAT) were also analysed. All parameters were measured preoperatively and 1, 3, and 6 months postoperatively. The average anterior Sim-k decreased from 59.63 ± 7.58 preoperatively to 57.19 ± 6.33 D 6 months postoperatively. CCT, CTP, CET, and OAT increased and IAT decreased significantly after 1 month. All parameters appeared unchanged at 6-months except that of OAT that further increased. Lenticule thickness was stable. In conclusion we observed that SLAK reshapes the cornea by central flattening with stromal thickening and epithelial thickness restoration

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression

    Get PDF
    Tumour-associated angiogenesis is partly regulated by the hypoxia-inducible factor (HIF) pathway. Endocrine tumours are highly vascularised and the molecular mechanisms of their angiogenesis are not fully delineated. The aim of this study is to evaluate angiogenesis and expression of HIF-related molecules in a series of patients with pancreatic endocrine tumours (PETs). The expression of vascular endothelial growth factor (VEGF), HIF-1α, HIF-2α and carbonic anhydrase 9 (CA9) was examined by immunohistochemistry in 45 patients with PETs and compared to microvascular density (MVD), endothelial proliferation, tumour stage and survival. Microvascular density was very high in PETs and associated with a low endothelial index of proliferation. Microvascular density was significantly higher in benign PETs than in PETs of uncertain prognosis, well-differentiated and poorly differentiated carcinomas (mean values: 535, 436, 252 and 45 vessels mm−2, respectively, P<0.0001). Well-differentiated tumours had high cytoplasmic VEGF and HIF-1α expression. Poorly differentiated carcinomas were associated with nuclear HIF-1α and membranous CA9 expression. Low MVD (P=0.0001) and membranous CA9 expression (P=0.0004) were associated with a poorer survival. Contrary to other types of cancer, PETs are highly vascularised, but poorly angiogenic tumours. As they progress, VEGF expression is lost and MVD significantly decreases. The regulation of HIF signalling appears to be specific in pancreatic endocrine tumours
    • …
    corecore