30 research outputs found

    Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Get PDF
    International audienceThe largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE ? change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF ? change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained TOA DCF is ?3.3±0.47, ?14±2.6, ?6.4±2.1 Wm?2 for the NIO, NWP, and NWA, respectively. Constraining the radiative transfer calculations by observational inputs reduces the uncertainty range in the DCF in these regions relative to global IPCC (2001) estimates by a factor of approximately 2. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing

    Spondylodiscitis following endovascular abdominal aortic aneurysm repair: imaging perspectives from a single centre's experience.

    Get PDF
    OBJECTIVE: Very few reports have previously described spondylodiscitis as a potential complication of endovascular aortic aneurysm repair (EVAR). We present to our knowledge the first case series of spondylodiscitis following EVAR based on our institution's experience over an 11-year period. Particular attention is paid to the key imaging features and challenges encountered when performing spinal imaging in this complex patient group. MATERIALS AND METHODS: Of 1,847 patients who underwent EVAR at our institution between January 2006 and January 2017, a total of 9 patients were identified with imaging features of spondylodiscitis (0.5%). All cross-sectional studies before and after EVAR were assessed by a Consultant Musculoskeletal Radiologist and a Musculoskeletal Radiology Fellow to evaluate for features of spondylodiscitis. RESULTS: All 9 patients had single-level spondylodiscitis involving lumbosacral levels adjacent to the aortic/iliac stent graft. Eight out of nine patients had an extensive anterior paravertebral phlegmon/abscess that was contiguous with the infected stent graft and native aneurysm sac ± anterior vertebral body erosion. Epidural disease was present in only 3 out of 9 patients and was a minor feature. MRI was non-diagnostic in 3 out of 9 patients owing to susceptibility artefact. 18F-FDG PET/CT accurately depicted the spinal level involved and adjacent paravertebral disease in patients with non-diagnostic MRI and was adopted as the follow-up modality in 3 out of 5 surviving patients. CONCLUSION: Spondylodiscitis is a rare complication post-EVAR. Imaging features of disproportionate anterior paravertebral disease and anterior vertebral body bony involvement suggest direct spread of infection posteriorly to the adjacent vertebral column. Use of MRI versus 18F-FDG PET/CT as the optimal imaging modality should be directed by the type of stent graft deployed

    Short-term storage of repetitions of two items

    No full text

    Atmos. Environ.

    No full text
    corecore