32 research outputs found

    IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKK beta and ER Stress Inhibition

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Overnutrition caused by overeating is associated with insulin and leptin resistance through IKK beta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKK beta/NF-k beta activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKK beta/NF-k beta signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKK beta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.88Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Central Exercise Action Increases the AMPK and mTOR Response to Leptin

    Get PDF
    AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus

    Selective modulation of the CAP/Cbl pathway in the adipose tissue of high fat diet treated rats

    No full text
    A high-fat diet (HFD) is associated with reduced glucose uptake in muscle, but not in adipose tissue. In the present study, we investigated whether a HFD can modulate glucose uptake in adipose tissue by increasing signal transduction through the CAP/Cbl pathway, independently of the PI3-K/Akt pathway. Our results suggest that, in HFD, the differential regulation of insulin-induced glucose uptake between skeletal muscle and adipose tissue may, in part, be a consequence of the CAP/Cbl/C3G pathway, since the expression of CAP and Cbl, and also the activation of this pathway were increased in adipose tissue but not in muscle. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.580204889489

    Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet

    No full text
    Recent studies have shown that statins might have relevant effects on insulin resistance in animal models and in humans. However, the molecular mechanisms that account for this improvement in insulin sensitivity are not well established. The aim of the present study was to investigate the effect of a statin on insulin sensitivity and insulin signaling in liver and muscle of rats fed on a high-fat diet (HFD) for 4 weeks, treated or not with lovastatin during the last week. Our data show that treatment with lovastatin results in a marked improvement in insulin sensitivity characterized by an increase in glucose disappearance rate during the insulin tolerance test. This increase in insulin sensitivity was associated with an increase in insulin-induced insulin receptor (IR) tyrosine phosphorylation and, in parallel, a decrease in IR serine phosphorylation and association with PTP1B. Our data also show that lovastatin treatment was associated with an increase in insulin-stimulated insulin receptor substrate (IRS) 1/phosphatidylinositol 3-kinase/Akt pathway in the liver and muscle of HFD-fed rats in parallel with a decrease in the inflammatory pathway (c-jun N-terminal kinase and 1 kappa beta kinase (IKK beta/inhibitor of kappa B/nuclear factor kappa B) related to insulin resistance. In summary,, statin treatment improves insulin sensitivity in HFD-fed rats by reversing the decrease in the insulin-stimulated IRS-1/phosphatidylinositol 3-kinase/Akt pathway in liver and muscle. The effect of statins on insulin action is further supported by our findings that HFD rats treated with statin show a reduction in IRS-1 serine phosphorylation, I kappa kinase (IKK)/inhibitor of kappa B/ nuclear factor kappa B pathway, and c-jun N-terminal kinase activity, associated with an improvement in insulin action. Overall, these results provide important new insight into the mechanism of statin action in insulin sensitivity. (C) 2008 Elsevier Inc. All rights reserved.571576

    Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats

    No full text
    Prolonged exercise of medium to high intensity is known to promote a substantial effect on the energy balance of rats. In male rats, moderately to severely intense programs lead to a reduction in food intake. However, the exact causes for the appetite-suppressive effects of exercise are not known. Here, we show that intracerebroventricular insulin or leptin infusion reduced food intake in exercised rats to a greater extent than that observed in control animals. Exercise was associated with a markedly increased phosphorylation/activity of several proteins involved in leptin and insulin signal transduction in the hypothalamus. The regulatory role of interleukin (IL)-6 in mediating the increase in leptin and insulin sensitivity in hypothalamus was also investigated. Treatment with insulin or leptin markedly reduced food intake in exercised rats that were pre-treated with vehicle, although no increase in sensitivity to leptin- and insulin-induced anorexia after pretreatment with anti-IL-6 antibody was detected. The current study provides direct measurements of leptin and insulin signaling in the hypothalamus and documents increased sensitivity to these hormones in the hypothalamus of exercised rats in an IL-6-dependent manner. These findings provide support for the hypothesis that the appetite-suppressive actions of exercise may be mediated by the hypothalamus.5592554256

    Acute exercise reverses TRB3 expression in the skeletal muscle and ameliorates whole body insulin sensitivity in diabetic mice

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Aim: TRB3 became of major interest in diabetes research when it was shown to interact with and inhibit the activity of Akt. Conversely, physical exercise has been linked to improved glucose homeostasis. Thus, the current study was designed to investigate the effects of acute exercise on TRB3 expression and whole body insulin sensitivity in obese diabetic mice. Methods: Male leptin-deficient (ob/ob) mice swam for two 3-h-long bouts, separated by a 45-min rest period. After the second bout of exercise, food was withdrawn 6 h before antibody analysis. Eight hours after the exercise protocol, the mice were submitted to an insulin tolerance test (ITT). Gastrocnemius muscle samples were evaluated for insulin receptor (IR) and IRS-1 tyrosine phosphorylation, Akt serine phosphorylation, TRB3/Akt association and membrane GLUT4 expression. Results: Western blot analysis showed that TRB3 expression was reduced in the gastrocnemius of leptin-deficient (ob/ob) mice submitted to exercise when compared with respective ob/ob mice at rest. In parallel, there was an increase in the insulin-signalling pathway in skeletal muscle from leptin-deficient mice after exercise. Furthermore, the GLUT4 membrane expression was increased in the muscle after the exercise protocol. Finally, a single session of exercise improved the glucose disappearance (K(ITT)) rate in ob/ob mice. Conclusion: Our results demonstrate that acute exercise reverses TRB3 expression and insulin signalling restoration in muscle. Thus, these results provide new insights into the mechanism by which physical activity ameliorates whole body insulin sensitivity in type 2 diabetes.19816169Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Acute Exercise Reduces Insulin Resistance-Induced TRB3 Expression and Amelioration of the Hepatic Production of Glucose in the Liver of Diabetic Mice

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)TRB3 (a mammalian homolog of Drosophila) is emerging as an important player in the regulation of insulin signaling. TRB3 can directly bind to Ser/Thr protein kinase Akt, the major downstream kinase of insulin signaling. Conversely, physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity; however, the molecular mechanisms by which exercise improves glucose homeostasis, particularly in the hepatic tissue, are only partially known. Here, we demonstrate that acute exercise reduces fasting glucose in two models diabetic mice. Western blot analysis showed that 8 h after a swimming protocol, TRB3 expression was reduced in the hepatic tissue from diet-induced obesity (Swiss) and leptin-deficient (ob/ob) mice, when compared with respective control groups at rest. In parallel, there was an increase in insulin responsiveness in the canonical insulin-signaling pathway in hepatic tissue from DIO and ob/ob mice after exercise. In addition, the PEPCK expression was reduced in the liver after the exercise protocol, suggesting that acute exercise diminished hepatic glucose production through insulin-signaling restoration. Thus, these results provide new insights into the mechanism by which physical activity improves glucose homeostasis in type 2 diabetes. J. Cell. Physiol. 221: 92-97, 2009. (C) 2009 Wiley-Liss, Inc.22119297Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Tub Has a Key Role in Insulin and Leptin Signaling and Action In Vivo in Hypothalamic Nuclei

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Mutation of tub gene in mice induces obesity, suggesting that tub could be an important regulator of energy balance. In the current study, we investigated whether insulin, leptin, and obesity can modulate Tub in vivo in hypothalamic nuclei, and we investigated possible consequences on energy balance, neuropeptide expression, and hepatic glucose metabolism. Food intake, metabolic characteristics, signaling proteins, and neuropeptide expression were measured in response to fasting and refeeding, intracerebroventricular insulin and leptin, and Tub antisense oligonucleotide (ASO). Tub tyrosine phosphorylation (Tub-p-tyr) is modulated by nutritional status. Tub is a substrate of insulin receptor tyrosine kinase (IRTK) and leptin receptor (LEPR)-Janus kinase 2 (JAK2) in hypothalamic nuclei. After leptin or insulin stimulation, Tub translocates to the nucleus. Inhibition of Tub expression in hypothalamus by ASO increased food intake, fasting blood glucose, and hepatic glucose output, decreased O-2 consumption, and blunted the effect of insulin or leptin on proopiomelanocortin, thyroid-releasing hormone, melanin-concentrating hormone, and orexin expression. In hypothalamus of mice administered a high-fat diet, there is a reduction in leptin and insulin-induced Tub-p-tyr and nuclear translocation, which is reversed by reducing protein tyrosine phosphatase 1B expression. These results indicate that Tub has a key role in the control of insulin and leptin effects on food intake, and the modulation of Tub may contribute to insulin and leptin resistance in DIO mice. Diabetes 62:137-148, 2013621137148Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)INCT (Instituto Nacional Ciencia e Tecnologia de Obesidade e Diabetes) [573856/2008-7]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2008/55674-8]CNPq [480131/2009-0]INCT (Instituto Nacional Ciencia e Tecnologia de Obesidade e Diabetes) [573856/2008-7

    Exercise Training Reduces Insulin Resistance and Upregulates the mTOR/p70S6k Pathway in Cardiac Muscle of Diet-Induced Obesity Rats

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.2263666674Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundacao de Apoio a Pesquisa do Estado de Santa Catarina (FAPESC)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore