2,170 research outputs found

    Intermittent administration of parathyroid hormone improves the repairing process of rat calvaria defects: A histomorphometric and radiodensitometric study

    Get PDF
    BackgroundThe aim of this study was to evaluate the effects of intermittent treatment of parathyroid hormone (PTH (1-34)) on the bone regeneration of critically-sized rat calvarial bone defects.Material and MethodsThirty-two male rats were trephined (4mm fullthickness diameter), in the central part of the parietal bones and divided into 2 groups of 16. The PTH group received subcutaneous injections of PTH (1-34) at 40µg/kg, 3 times a week and the control (CTL) group received the vehicle in the same regimen. The rats were sacrificed at 4 weeks post-treatment regimen, the parietal bones were extracted and samples were evaluated through histomorphometry and radiodensitometry.ResultsThe histological observations showed that the PTH group presented more “island-like” new bone between the defect margins with fibrous tissues than did the CTL group. The PTH group significantly exhibited greater histologic bone formation than did the CTL group (1.5mm ±0.7; 1.9 mm ± 0.6, p<0.05/ for residual bone defect). The radiodensitometry analysis revealed significant differences among the PTH and CTL groups (2.1 Al eq. ±0.04; 1.8Al eq. ±0.06, p<0.05), demonstrating an increase in bone mineral density. The PTH treatment contributed to the bone formation with a higher amount of mineral and/or fibrous tissue when compared with the CTL group.ConclusionsThe results suggest that it was possible to increase the process of bone regeneration by accelerating the healing process in rat calvarial defects through intermittent administration of the PTH treatment. Key words: Bone, skull, rats, bone regeneration, bone density

    Dark spinor models in gravitation and cosmology

    Get PDF
    We introduce and carefully define an entire class of field theories based on non-standard spinors. Their dominant interaction is via the gravitational field which makes them naturally dark; we refer to them as Dark Spinors. We provide a critical analysis of previous proposals for dark spinors noting that they violate Lorentz invariance. As a working assumption we restrict our analysis to non-standard spinors which preserve Lorentz invariance, whilst being non-local and explicitly construct such a theory. We construct the complete energy-momentum tensor and derive its components explicitly by assuming a specific projection operator. It is natural to next consider dark spinors in a cosmological setting. We find various interesting solutions where the spinor field leads to slow roll and fast roll de Sitter solutions. We also analyse models where the spinor is coupled conformally to gravity, and consider the perturbations and stability of the spinor.Comment: 43 pages. Several new sections and details added. JHEP in prin

    THERMODYNAMIC SIMULATION OF BIOMASS GAS STEAM REFORMING FOR A SOLID OXIDE FUEL CELL (SOFC) SYSTEM

    Get PDF
    This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC), as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.26474575

    Measurements of the Correlation Function of a Microwave Frequency Single Photon Source

    Full text link
    At optical frequencies the radiation produced by a source, such as a laser, a black body or a single photon source, is frequently characterized by analyzing the temporal correlations of emitted photons using single photon counters. At microwave frequencies, however, there are no efficient single photon counters yet. Instead, well developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate how the properties of a microwave single photon source can be characterized using correlation measurements of the emitted radiation with such detectors. We also demonstrate the cooling of a thermal field stored in a cavity, an effect which we detect using a cross-correlation measurement of the radiation emitted at the two ends of the cavity.Comment: 5 pages, 4 figure
    corecore