8 research outputs found

    Similarity between Kaluza-Klein and Open-string amplitudes in Diphoton Production

    Full text link
    We calculate the tree-level open-string amplitudes for the scattering of four massless particles with diphoton final states. These amplitudes are required to reproduce those of standard model at the tree level in the low energy limit. After low energy stringy corrections, we found that they have similar form to the same processes induced by exchange of the Kaluza-Klein(KK) excitations of graviton in ADD scenario. Using this similarity, we apply constraints on the KK mass scale MDM_D to the string scale MSM_S. The results are consistent with constraints from the 4-fermion scattering, about 0.6−0.90.6-0.9 TeV.Comment: 10 pages, modified reference

    Graviton production with 2 jets at the LHC in large extra dimensions

    Full text link
    We study Kaluza-Klein (KK) graviton production in the large extra dimensions model via 2 jets plus missing transverse momentum signatures at the LHC. We make predictions for both the signal and the dominant Zjj and Wjj backgrounds, where we introduce missing P_T-dependent jet selection cuts that ensure the smallness of the 2-jet rate over the 1-jet rate. With the same jet selection cuts, the distributions of the two jets and their correlation with the missing transverse momentum provide additional evidence for the production of an invisible massive object.Comment: 8 pages, 10 figures, 1 table; Version to be printed in JHE

    Chameleon Gravity, Electrostatics, and Kinematics in the Outer Galaxy

    Full text link
    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to "conducting" boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.Comment: 17 pages, 3 figure

    Classical and Quantum Consistency of the DGP Model

    Get PDF
    We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline a non-generic but consistent choice of counterterms for which this disaster does not happen and for which the model remains calculable and successful in all the astrophysical situations of interest. By this choice, the extrinsic curvature K_{\mu\nu} acts roughly like a dilaton field controlling the strength of the interaction and the cut-off scale at each space-time point. At the surface of Earth the cutoff is \sim 1 cm but it is unlikely that the associated quantum effects be observable in table top experiments.Comment: 26 pages, 1 eps figur

    Will we observe black holes at LHC?

    Get PDF
    The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.Comment: 5 pages, 2 figures. Minor changes to match version to appear in Class. Quant. Gra

    Black Hole Astrophysics in AdS Braneworlds

    Get PDF
    We consider astrophysics of large black holes localized on the brane in the infinite Randall-Sundrum model. Using their description in terms of a conformal field theory (CFT) coupled to gravity, deduced in Ref. [1], we show that they undergo a period of rapid decay via Hawking radiation of CFT modes. For example, a black hole of mass few×M⊙{\rm few} \times M_\odot would shed most of its mass in ∌104−105\sim 10^4 - 10^5 years if the AdS radius is L∌10−1L \sim 10^{-1} mm, currently the upper bound from table-top experiments. Since this is within the mass range of X-ray binary systems containing a black hole, the evaporation enhanced by the hidden sector CFT modes could cause the disappearance of X-ray sources on the sky. This would be a striking signature of RS2 with a large AdS radius. Alternatively, for shorter AdS radii, the evaporation would be slower. In such cases, the persistence of X-ray binaries with black holes already implies an upper bound on the AdS radius of L \la 10^{-2} mm, an order of magnitude better than the bounds from table-top experiments. The observation of primordial black holes with a mass in the MACHO range M∌0.1−0.5M⊙M \sim 0.1 - 0.5 M_\odot and an age comparable to the age of the universe would further strengthen the bound on the AdS radius to L \la {\rm few} \times 10^{-6} mm.Comment: 14 pages, latex, no figures v2: added reference

    Origami World

    Full text link
    We paste together patches of AdS6AdS_6 to find solutions which describe two 4-branes intersecting on a 3-brane with non-zero tension. We construct explicitly brane arrays with Minkowski, de Sitter and Anti-de Sitter geometries intrinsic to the 3-brane, and describe how to generalize these solutions to the case of AdS4+nAdS_{4+n}, n>2n>2, where nn n+2n+2-branes intersect on a 3-brane. The Minkowski and de Sitter solutions localize gravity to the intersection, leading to 4D Newtonian gravity at large distances. We show this explicitly in the case of Minkowski origami by finding the zero-mode graviton, and computing the couplings of the bulk gravitons to the matter on the intersection. In de Sitter case, this follows from the finiteness of the bulk volume. The effective 4D Planck scale depends on the square of the fundamental 6D Planck scale, the AdS6AdS_6 radius and the angles between the 4-branes and the radial AdSAdS direction, and for the Minkowski origami it is M42=2/3(tan⁥α1+tan⁥α2)M∗4L2M_4{}^2 = {2/3} \Bigl(\tan \alpha_1 + \tan \alpha_2 \Bigr) M_*{}^4 L^2. If M∗∌few×TeVM_* \sim {\rm few} \times TeV this may account for the Planck-electroweak hierarchy even if L∌10−4mL \sim 10^{-4} {\rm m}, with a possibility for sub-millimeter corrections to the Newton's law. We comment on the early universe cosmology of such models.Comment: plain LaTeX, 23 pages + 2 .eps figure

    Signatures of modified gravity on the 21 cm power spectrum at reionisation

    No full text
    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z_* ~ 12 will be detectable for a scalar field range as low as 5 kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.Comment: 22 pages, 8 figures, typos correcte
    corecore