
ar
X

iv
:h

ep
-t

h/
04

04
15

9v
1 

 2
1 

A
pr

 2
00

4

IFT-UAM/CSIC-04-13
CERN-PH-TH/2004-063

Classical and Quantum Consistency

of the DGP Model

Alberto Nicolis a and Riccardo Rattazzi b
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Abstract

We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective
action. The truncation of this action to the bending mode π consistently describes physics in
a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect,
which restores agreement with precise tests of general relativity, follows straightforwardly. We
give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for
most of the relevant cases, like for instance the spherical source in asymptotically flat space.
However we confirm that around certain interesting self-accelerating cosmological solutions
there is a ghost. We consider the issue of quantum corrections. Around flat space π becomes
strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of
the model. Indeed the tower of higher dimensional operators which is expected by a generic
UV completion of the model limits predictivity at even larger length scales. We outline a
non-generic but consistent choice of counterterms for which this disaster does not happen
and for which the model remains calculable and successful in all the astrophysical situations
of interest. By this choice, the extrinsic curvature Kµν acts roughly like a dilaton field
controlling the strength of the interaction and the cut-off scale at each space-time point. At
the surface of Earth the cutoff is ∼ 1 cm but it is unlikely that the associated quantum effects
be observable in table top experiments.

1 Introduction

In recent years several attempts have been made to formulate a theoretically consistent ex-
tension of General Relativity that modifies gravity at cosmological distances while remaining
compatible with observations at shorter distances. Well known examples in the literature
are models of massive gravity [1, 2], the GRS model [3], the DGP model [4], and the new-
born model of ‘ghost condensation’ [5]. These attempts are motivated both by the appealing
theoretical challenge they represent, and, perhaps more interestingly, by the experimental
indication that something strange is indeed happening at very large scales: the expansion of
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the Universe is accelerating. This fact can be explained, as it is usually done, by invoking a
small cosmological constant, or some sort of ‘dark energy’. Nevertheless, it is also worth con-
sidering the possibility that at cosmological distances gravity itself is different from what we
experience at much smaller scales, in the solar system. This perspective could perhaps offer
a new direction for addressing the cosmological constant problem (see for instance ref. [6]).

In the present paper we concentrate on the DGP model. In this model there exists
a critical length scale LDGP below which gravity looks four dimensional, while for larger
distances it weakens and becomes five dimensional. To avoid conflict with observations, the
parameters of the model can be adjusted to make LDGP of the order of the present Hubble
horizon H−1

0 . One cosmological solution of DGP is an ordinary Friedmann-Robertson-Walker
Universe that, even in the absence of a cosmological constant, gets accelerated at late times by
the weakening of gravity [7, 8]. Moreover, even though the length scale of gravity modification
is cosmological, one still expects small but non-negligible effects on solar system astrophysical
measurements [9, 10]. This makes the model extremely interesting from the phenomenological
point of view.

In spite of these appealing features, the model is plagued by some consistency problems,
as pointed out in ref. [11]. There it was shown that the theory has strong interactions at a
tiny energy scale

Λ ∼ (MP /L2
DGP)1/3 , (1)

which corresponds to wavelengths of about 1000 km (a qualitatively similar, but quantita-
tively different, result was found in ref. [12]). This means that below 1000 km the model
loses predictivity, and one cannot perform sensible computations without knowing the UV
completion of the theory. In the presence of curvature the situation seems even worse. In-
deed in a non-renormalizable theory like the one at hand, quantum corrections necessarily
imply the presence of an infinite tower of higher dimensional operators suppressed by inverse
powers of the interaction scale Λ. A ‘generic’ choice of this tower of operators disrupts the
classical computations of the original DGP model [11], making it practically uncalculable,
whenever the Riemann curvature is bigger than O(1/L2

DGP). In practice the unknown UV
completion of the model dominates physics above the tiny curvature 1/L2

DGP. In the case of
a spherical source in asymptotically flat space this happens below a distance from the source
given by the so called Vainshtein length [13, 14]

RV ∼ (RS L2
DGP)1/3 , (2)

where RS is the Schwarzschild radius of the source. For instance, for the Sun RV is about
1020 cm! Apparently one cannot compute the gravitational potential of the Sun at distances
shorter than 1020 cm. A completely equivalent problem has been pointed out in the case of
massive gravity [15]. It should be stressed that, in the purely classical DGP model, RV is
precisely the length below which classical non-linearities in the field equations eliminate the
phenomenologically unwanted effects of the extra polarizations of the graviton [13, 14]. The
latter are usually referred to as the van Dam-Veltman-Zakharov discontinuity [16]. These
non-linearities are therefore a virtue of the classical theory, but upon quantization they
suggest the presence of many more uncontrollable interactions.

Finally, the model possesses negative energy classical solutions, which signal the presence
of instabilities already at the classical level. These negative energy solutions have however
a typical curvature larger than 1/L2

DGP, so that their true presence, or absence, is fully
dependent on the UV completion.
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In this paper we try to understand to what extent all these results really threaten the
consistency and the predictivity of the model. In spite of the above difficulties we will be
able to draw fairly optimistic conclusions. In practice we will show that one can consistently
assume a UV completion (≡ tower of higher dimensional operators) where the theory can
be extrapolated down to distances significantly shorter than 1/Λ. Though our choice is
consistent, in the sense that it is stable under RG evolution, it may at first sight look
unnatural from the effective field theory view point. We will try to argue that perhaps it
isn’t.

In the DGP model our world is the 4D boundary of an infinite 5D spacetime. One can
integrate out the bulk degrees of freedom and find an “effective” action for the 4D fields. This
was explicitly done in ref. [11], where it was found that from the 4D point of view, beside the
ordinary graviton, there is an extra scalar degree of freedom π that plays a crucial role. This
is essentially a brane bending mode contributing to the extrinsic curvature of the boundary
like Kµν ∝ ∂µ∂νπ. It is this scalar that interacts strongly at momenta of order Λ. Indeed
there exists a limit in which the strong interaction scale is kept fixed but all other degrees
of freedom (namely the graviton and a vector Nµ) decouple. This means that in order to
grasp the interesting physics related to the strong interaction we can restrict to the π sector,
which represents a consistent truncation of the theory. We will see that all the interesting
features (good or bad) of the DGP model can be traced to the dynamics of this scalar π. For
our purposes we can therefore forget about the 5D geometric setup of the model and study
a scalar theory with a specific cubic interaction, namely 1

Λ3 (∂π)2 �π. This largely simplifies
the analysis.

We start in sect. 3 by studying classical field configurations in this theory. For any given
distribution of matter sources, the field equation for π turns out to be a quadratic algebraic

equation for the tensor of its second derivatives ∂µ∂νπ. Like ordinary quadratic equations,
it possesses doublets of solutions: for any solution π+(x), there exists a corresponding ‘con-
jugate’ solution π−(x) 6= π+(x). By studying the stability of a generic solution against small
fluctuations, one discovers that this conjugation exactly reverses the sign of the kinetic action
of the fluctuations. This means that if π+(x) is a stable solution, its conjugate π−(x) must
be unstable. It is therefore not surprising that classical instabilities were found in ref. [11].

Does the existence of these unstable solutions make the model inconsistent at the classical
level? We argue that this is not the case: the classical stability of the π system is guaranteed
for a well defined class of energy-momentum sources and boundary conditions at spatial
infinity, as we prove explicitly in sect. 4. In particular, we show that for any configuration of
sources with positive energy density decaying at spatial infinity, and small pressure (smaller
than ρ/3), the solution which is trivial at spatial infinity is stable everywhere1. Of course the
conjugate configuration, which instead will diverge at infinity, will be unstable. The point
is that the sets of stable and unstable solutions are disconnected in field space, they cannot
‘communicate’. It suffices that a solution is locally stable at one space-time point to ensure
its global stability in the whole Universe, because there exists no continuous path of solutions
that connects the stable and the unstable regions in field space. Unstable solutions simply
correspond to the ‘wrong’ choice of boundary conditions.

Unfortunately nothing prevents some interesting solutions from having the wrong bound-
ary behaviour: it is the case of the de Sitter solution, which describes the self-accelerated

1If the sources have relativistic velocities an additional hypothesis is required, see sect. 4.
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Universe we mentioned above. In ref. [11] it was pointed out that such solution is plagued by
ghost-like instabilities. In sect. 5 we check this result in our formalism, indeed finding that
the self-interacting dynamics of π is responsible for the existence of the de Sitter solution.
The latter turns out to be nothing but the conjugate of the trivial configuration π(x) = 0,
and as such must be unstable.

In sect. 6 we study the solution for π in presence of a spherical heavy source. We reproduce
in the π language the results of refs. [17, 18, 9, 19], namely that the correction induced by the
DGP model scales like (r/RV )3/2 relative to Newton’s law. As stressed in ref. [9], the sign
of this correction depends on the cosmological phase, i.e. on the behaviour of the Universe
at infinity. In accordance with the general proof given in sect. 4, we explicitly check that
fluctuations around this solution are stable. Also in this case the interesting features of DGP
are encoded in the non trivial dynamics of the field π, in a simple and transparent way.

The results of sects. 4, 5, 6 imply that for any astrophysical source and for a wide and
relevant class of cosmological solutions no classical instability develops in the π field. Finally,
in sect. 7, we discuss the problem of quantum corrections. We have already mentioned that
a generic choice of higher dimension operators leads to uncalculability when the Riemann
curvature is bigger than O(1/L2

DGP) ∼ H2
0 . We look at this problem in more detail. We

characterize higher order corrections, distinguishing between a classical and a quantum ex-
pansion parameter. We notice that the large effects of the counterterms which were pointed
out is ref. [11] are more related to the classical expansion that to the quantum one. We
clarify this, by discussing first the structure of the 1-loop effective action. We show that
the terms which are truly needed for unitarity and consistency, and which are associated to
logarithmic divergences, do not grow in the regions of large curvature. In a sense this follows
simply from the fact that the classical theory is well defined, i.e. there are no ghosts. Inspired
by this simple example we then proceed to give a general and consistent characterization of
the class of counterterm Lagrangians which do not destabilize the naive classical results. Our
claim is based on a remarkable property of the tree level action for π. The large curvature
backgrounds around which one seemingly looses calculability correspond to a classical back-
ground |∂µ∂νπcl/Λ

3| ≫ 1. Around such a background the quantum fluctuation ϕ = π − πcl

receives a large positive contribution to its kinetic term

Lkin = Zµν(∂µϕ)(∂νϕ) , (3)

where Zµν is a non singular matrix proportional to ∂µ∂νπcl/Λ
3 itself. The interaction La-

grangian remains however the same: no large factors there. The large kinetic term then sup-
presses interactions (as seen for instance by going to canonical fields). At each spacetime point
x one can define (suppressing spacetime indices) a naive local scale Λ̃(x) = Λ

√

Z(x) ≫ Λ,
which is a function of the background field πcl itself. Our basic result is then the following. If
the counterterm action depends on π and Λ only via the running scale Λ̃ and its derivatives,
then the classical DGP action can be used down to the distance 1/Λ̃(x) at each point x. This
implies, in particular, that the Vainshtein solutions within the solar system are always fine.
On the other hand at the Earth surface one finds Λ̃ ∼ 1 cm−1. In principle this could be
worrisome, or interesting. In practice it is probably neither. This is because at the surface
of Earth π is well decoupled from matter.

The counterterm structure we select must correspond to some specific UV completion for
the physics at the 4D boundary. At the scale Λ̃ we expect new states to become relevant.
This scale is determined by the background expectation value of the massless field π, or
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more precisely ∂µ∂νπ ∝ Kµν . Therefore the extrinsic curvature acts like a sort of dilaton
controlling the scale of the new physics. A direct consequence of this property is that our
ansatz can be motivated by an approximate scale invariance of the UV completion.

We conclude with an outlook on possible developments of our results.

2 Boundary effective action

The DGP model [4] describes gravity in a five-dimensional spacetime M, with boundary ∂M.
The action is postulated to be purely Einstein-Hilbert in the bulk, plus a four dimensional
Einstein-Hilbert term localized at the boundary, with different Planck scales,

SDGP = 2M3
5

∫

M

d5x
√
−GR(G) + 2M2

4

∫

∂M
d4x

√−g R(g) − 4M3
5

∫

∂M
d4x

√−g K(g) , (4)

where GMN is the 5D metric, gµν is the 4D induced metric on the boundary, and we have
added the Gibbons-Hawking term at the boundary in order to obtain the 5D Einstein equa-
tions upon variation of the bulk action [20]. Matter fields and a possible cosmological constant
are supposed to be localized on the boundary. A special role is played by the length scale
LDGP = 1/m ≡ M2

4 /M3
5 : below LDGP gravity looks four-dimensional, while at larger length

scales it enters in the five-dimensional regime. In order for the model to be viable, LDGP

must be huge, at least of the order of the present Hubble horizon.
In the following sections we will refer to the 4D boundary effective action obtained in

ref. [11] by integrating out the bulk degrees of freedom. We summarize here only the main
results. By using spacetime coordinates {xµ, y}, with the boundary sitting at y = 0, the bulk
piece of the action can be rewritten in terms of ADM-like variables as

Sbulk = 2M3
5

∫

d4x

∫

∞

0
dy

√−g N
[

R(g) − KµνKµν + K2
]

, (5)

where N = 1/
√

Gyy is the lapse, Nµ = Gyµ is the shift, gµν = Gµν is the metric on surfaces
of constant y, and the extrinsic curvature tensor is

Kµν =
1

2N
(∂ygµν −∇µNν −∇νNµ) . (6)

One then expands the 5D metric and all the other geometric quantities around a flat back-
ground, GMN = ηMN +hMN , and integrate out the bulk in order to obtain an effective action
for the 4D dimensional fields living on the boundary. The final result, at the quadratic level,
is

Sbdy ≃ M2
4

∫

d4x
[

1
2 h′µν

�h′
µν − 1

4 h′
�h′ − m N ′µ∆N ′

µ + 3m2 π �π
]

, (7)

where ∆ is a non-local differential operator, ∆ =
√
−� =

√

−ηµν ∂µ∂ν , and the kinetic terms
have been diagonalized by defining

hyy = −2∆π , N ′
µ = Nµ − ∂µπ , h′

µν = hµν − m π ηµν . (8)

By taking into account bulk interactions with higher powers of hMN , one finds that the
leading boundary interaction term is cubic in π, and involves four derivatives,

∆S
(3)
bdy = −M3

5

∫

d4x (∂π)2 �π . (9)
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The comparison of this interaction with the kinetic term of the π field in eq. (7) immediately
shows that the π sector of the theory becomes strongly interacting at a very small energy
scale Λ = (m2M4)

1/3 = M2
5 /M4, which corresponds to a length scale of about 1000 km.

The boundary effective action we will use throughout the paper is the sum Sbdy +∆S
(3)
bdy.

Notice that ∆S
(3)
bdy is the leading boundary interaction term in a quantum sense: it gives the

largest amplitude in low energy scattering processes, and the scale Λ associated to it is the
lowest of all strong interaction scales associated to further interaction terms. These terms
are schematically of the form [11]

∆Lbdy ∼ M3
5 ∂ (N ′

µ)p (∂π)q (h′
µν)s ∼ mM2

4 ∂

(

N̂ ′
µ

m1/2M4

)p
(

∂π̂

mM4

)q

(h′
µν)s , (10)

where N̂ ′
µ and π̂ are canonically normalized, and p + q + s ≥ 3. Eq. (9) corresponds to the

term with p = s = 0 and q = 3.

However, in this paper we study classical field configurations, and from a classical point
of view it is not immediately manifest why eq. (9) should be the most important interaction
term, and why we should be allowed to neglect all the others. In fact, the strong interaction
scale Λ has no meaning at the classical level (see discussion in sect. 7). Nevertheless, we
will check explicitly in the two specific cases we will deal with (the de Sitter solution and
the spherically symmetric solution) that indeed all other interaction terms are subdominant
as long as the flat-space approximation is valid, i.e. as long as |h′

µν | ≪ 1. This fact can be
understood in a general although formal way. First, if |h′

µν | ≪ 1, in eq. (10) we can stick to
terms with s = 0. Then, suppose we have a compact source for our fields: the region in which
space is nearly flat is the region well outside the Schwarzschild radius RS . We can mimic to
be in this region by formally sending RS to zero, i.e. by decoupling four-dimensional gravity
from the source. In this limit the solution for the metric is trivial, h′

µν = 0. However, we
do not want to end up in a completely trivial configuration, so we want to preserve the self-
coupling of the π field, as well as its interaction with the source: in terms of the canonically
normalized π̂ field, the cubic self coupling is unchanged if we keep Λ = M2

5 /M4 fixed; in
order to take into account the interaction with matter sources, we notice that the interaction
Lagrangian between the 4D metric perturbation hµν and the matter stress energy tensor Tµν

is, by definition, 1
2hµνT µν . From the definition of π, eq. (8), we see that π̂ interacts with

matter via a term 1
2M4

π̂T . Therefore, if we take the formal limit

M4,M5, Tµν → ∞ ,
M2

5

M4
= const ,

Tµν

M4
= const , (11)

we decouple 4D gravity while keeping the full Lagrangian for π̂ fixed. By ‘full’ we mean the
sum of kinetic, cubic and source terms. We stress that when applying this limit to a spherical
source of mass M , the Vainshtein radius R3

V = RSL2
DGP = MM6

5 /M3
4 remains fixed, showing

that we are focusing on the genuine non-linearities of the DGP model. The point now is that
in the above limit all coefficients of further interactions, eq. (10), vanish,

mM2
4 ∂

(

N̂ ′
µ

m1/2M4

)p
(

∂π̂

mM4

)q

=

(

M4

M2
5

)q 1

M
3p/2+q−3
5

∂ (N̂ ′
µ)p(∂π̂)q → 0 . (12)
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So far we neglected the dynamics of N̂ ′
µ, but the above result tells us that we were justified

in doing so: N̂ ′
µ does not interact directly with matter, and in the limit we are considering all

its interactions vanish, thus decoupling it from all other degrees of freedom. In conclusion,
we see that in the limit in which the metric perturbation can be neglected, |h′

µν | ≪ 1, eq. (9)
gives the dominant interaction term also for classical field configurations. Conversely our
approximation breaks down when |h′

µν | ∼ 1, like when approaching a black-hole horizon. In
fact when this happens we also have (∂π̂/mM4) ≡ ∂π ∼ 1 (see sect. 6). Since π roughly
measures the bending of the brane, this simply tells us that our approximation breaks down
when the brane can no longer be treated as approximately flat in 5D. In the final section we
will briefly explain what we expect to happen in this regime.

3 General properties of classical solutions

We now move to study classical solutions in presence of matter sources on the boundary. We
restrict to the π sector, with cubic self-interactions and coupled to matter. As we showed in
the previous section, this is a consistent truncation of the theory, in the sense that there exist
a limit, eq. (11), in which all other degrees of freedom decouple, and all further interactions
vanish.

From the results reported in the previous section we have that the full action for the π
field in flat space is

S =

∫

d4x

[

−3(∂π̂)2 − 1

Λ3
(∂π̂)2 �π̂ +

1

2M4
π̂T

]

, (13)

where T = T µ
µ, and we canonically normalized π.

The first variation of S with respect to π̂ gives the field equation

6�π̂ − 1

Λ3
�(∂π̂)2 +

2

Λ3
∂µ(∂µπ̂ �π̂) +

T

2M4
= 0 , (14)

which can be rewritten as

3�π̂ − 1

Λ3
(∂µ∂ν π̂)2 +

1

Λ3
(�π̂)2 = − T

4M4
. (15)

Notice that the terms involving third derivatives of π̂ have canceled out, thus leaving us
with an algebraic equation for its second derivatives. In terms of the tensor field K̃µν(x) =
− 1

Λ3 ∂µ∂ν π̂ the above equation reads

K̃2 − (K̃µν)2 − 3K̃ = − T

4Λ3M4
, (16)

where K̃ = K̃µ
µ. This result is easy to understand from a geometric point of view, by

referring to the 5D setup of the model. The field equation that derives from varying the bulk
action eq. (5) with respect to the lapse N is one of the Gauss-Codazzi equations,

R(g) + KµνKµν − K2 = 0 , (17)

7



which is an algebraic relation between intrinsic and extrinsic curvature of the boundary.
The intrinsic curvature R(g) can be eliminated by means of the Einstein equations on the
boundary,

4M2
4 (Rµν − 1

2 gµν R) − 4M3
5 (Kµν − gµν K) = Tµν , (18)

thus obtaining an algebraic relation between the extrinsic curvature Kµν and the matter
stress-energy tensor. The extrinsic curvature is easily related to π by expanding eq. (6),

Kµν = m

[

− 1

Λ3
∂µ∂ν π̂

[

1 + O
(

1
M5

· M4

M2

5

∂π̂
)]

+ O
(

1
M5

· M4

M2

5

∂ĥ′
µν

)

+ O
(

1

M
3/2

5

· ∂N̂ ′
µ

)]

.

(19)
In the limit we are considering π gives the dominant contribution, Kµν ≃ − m

Λ3 ∂µ∂ν π̂ = mK̃µν ,
and this leads precisely to our eq. (16). This remark also tells us that eq. (16) is more
fundamental than its counterpart written in terms of π̂, eq. (15). The latter is valid only
in the limit of nearly flat space, while the former is a combination of a geometric identity
and of the exact Einstein equations on the boundary, and as such is exact also in presence
of large curvatures, as long as the classical theory makes sense. Of course in such a case the
tensor K̃µν is the extrinsic curvature of the boundary in units of m, rather than the second
derivative of π̂.

Once a solution of eq. (16) for a given distribution of sources has been found, one may
be interested in studying its stability. In order to do that, it is necessary to perturb π̂ and
expand the action up to quadratic order in the perturbation ϕ,

Sϕ =

∫

d4x

[

−3(∂ϕ)2 − 1

Λ3

(

�π̂ (∂ϕ)2 + 2 ∂µπ̂ ∂µϕ�ϕ
)

]

. (20)

By using the identity ∂µϕ�ϕ = ∂ν [∂νϕ∂µϕ − 1
2ηµν(∂ϕ)2], and integrating by parts, we find

Sϕ =

∫

d4x

[

−3(∂ϕ)2 +
2

Λ3
(∂µ∂ν π̂ − ηµν�π̂) ∂µϕ∂νϕ

]

= (21)

=

∫

d4x
[

−3(∂ϕ)2 − 2
(

K̃µν − ηµνK̃
)

∂µϕ∂νϕ
]

. (22)

This result deserves some comments. First, notice that the starting cubic interaction term
involves four derivatives, but the resulting quadratic action for the fluctuation ϕ does not
contain terms with more than two derivatives acting on the ϕ’s. This remarkable feature
makes the issue of stability more tractable, since it prevents the appearance of ghost states at
high momenta, when higher derivatives contributions to the quadratic action could become
important and destabilize the system. Second, the coefficients in Sϕ depend only on the
tensor K̃µν , in an algebraic way. The fact that both the field equations and the condition
for stability depend algebraically on K̃µν will play a crucial role in what follows.

A deeper insight into the structure of classical solutions comes from the following remark.
For a given distribution of sources, eq. (16) is a second-order algebraic equation for K̃µν .
Instead of having a single solution, it is reasonable to expect doublets of solutions K̃±

µν , like
in ordinary quadratic equations. Moreover, one expects that in general the stability of the
system depends on the solution chosen inside this doublet, since the quadratic Lagrangian
for the fluctuation ϕ, eq. (22), depends on K̃µν . Even better, given the simple dependence
of the overall coefficient of ∂µϕ∂νϕ in eq. (22) on K̃µν ,

Zµν = −3ηµν − 2(K̃µν − ηµνK̃) , (23)
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one can straightforwardly invert this relation and express K̃µν in terms of Zµν ,

K̃µν = 1
2ηµν − 1

2(Zµν − 1
3ηµνZ) , (24)

where Z = Zµ
µ. This is remarkable: now we can write our field equation, eq. (16), directly

as an algebraic equation for the kinetic coefficient of the fluctuations,

1
3Z2 − (Zµν)2 = 6 − T

2Λ3M4
. (25)

In the above equation the linear term in Zµν has canceled out, thus leading to a purely
quadratic equation. This explicitly shows that if Z+

µν is a solution, so is its ‘conjugate’
Z−

µν ≡ −Z+
µν .

By definition eq. (22) now simply reads,

Sϕ =

∫

d4xZµν(x) ∂µϕ∂νϕ , (26)

which shows that a solution is locally stable against small fluctuations if and only if the matrix
Zµν , once diagonalized, has the usual ‘healthy’ signature (+,−,−,−). (In the following
section we will be more precise in defining the requirements that ensure the stability of the
system.) Therefore, if a solution Z+

µν is locally stable, its conjugate Z−
µν is locally unstable.

The kinetic terms of the small fluctuations around the two solutions are exactly opposite.

Coming back to K̃µν , we conclude that if K̃+
µν is a solution for a given matter distribution,

then there always exists another solution K̃−
µν = ηµν − K̃+

µν for the same matter distribution,
and the stability properties of the two solutions are opposite. Of course, since by definition
K̃µν = − 1

Λ3 ∂µ∂ν π̂, we have to check that K̃−
µν is indeed the second derivative of a scalar field.

However this is automatic, since ηµν itself is a second derivative, ηµν = 1
2∂µ∂ν(xαxα).

4 Classical stability

We now address in detail the issue of classical stability. We will show that under very general
conditions a solution which becomes trivial at spatial infinity is stable everywhere. Before
proving this fact we want to specify what we mean by ‘stable’. In particular, we are going to
characterize the stability of a generic classical solution by studying the tensor structure of the
quadratic action of the fluctuations, eq. (26), around that solution. Notice that while for a
stationary solution the concept of stability is perfectly defined, for a solution which evolves in
time such a definition is a bit tricky. After all, if a solution depends on time the energy of the
fluctuations around that solution is not conserved. For instance, one can expect to observe
resonance phenomena associated to modes whose proper frequency is of the order of the
inverse time scale on which the background solution evolves. A resonant growing fluctuation
can be certainly seen as an instability, but its presence is not simply encoded in the tensor
structure of the quadratic action. Our intention can therefore appear to be naive. However,
the point is that our characterization is certainly sensible for ultraviolet modes, well above
all possible resonances, on time and length scales much shorter than the typical time and
length scales on which the background varies. In such a regime it is perfectly acceptable to
study the stability of the system as if Zµν(x) were constant in space and time. We call this

9



concept of stability ‘local’, since it refers to the local structure of the quadratic Lagrangian
of the fluctuations, and in principle nothing prevents the system from being stable in a given
spacetime region (i.e. stable against short wavelength fluctuations localized in that region),
and unstable in a different region. In this section we prove that under proper although
general conditions this cannot happen.

In a system described by a quadratic Lagrangian of the type of eq. (26) two physically
different kinds of instabilities must be considered. The first is similar to a tachyonic insta-
bility, and, roughly speaking, is related to the relative signs of the terms involving time and
space derivatives. If one of the relative signs is wrong, there exists an exponentially growing
mode. More precisely, consider the equation of motion deriving from eq. (26),

Zµν ∂µ∂νϕ = 0 , (27)

where, with the above discussion in mind, we neglected the space-time dependence of Zµν .

For a mode with four-momentum kµ = (ω,~k), this gives the dispersion relation Zµνk
µkν = 0,

which can be cast in the form

(Z00 ω + Z0i ki)2 = (Z0iZ0j − Z00Zij)k
ikj . (28)

In order for the system to be stable, the solution for ω must be real for any wave vector
~k. The requirement is therefore that the 3×3 matrix Z0iZ0j − Z00Zij is positive definite.
Although not manifestly, this condition is clearly Lorentz invariant, since it corresponds to
the requirement that the Lorentz invariant equation Zµνkµkν = 0 has only real solutions
(apart from an arbitrary overall phase multiplying kµ).

The second kind of instability one has to consider is the ghost-like instability, which is
related to the overall sign of the kinetic Lagrangian. Suppose that all relative signs are
correct, so that all frequencies are real and there exists no exponentially growing mode.
However, if the overall sign of the quadratic Lagrangian is wrong and our scalar field is
coupled to ordinary matter, then it is possible with zero total energy to amplify fluctuations
in both sectors, and this process is going to happen spontaneously already at the classical
level. At the quantum level the problem is probably even worse, although it is not yet clear
how to do sensible and consistent computations in a quantum theory with ghosts in the
physical spectrum (see for instance [21, 22]). This kind of instability, unlike the previous, is
there only in presence of interactions with other sectors. If the system is free of tachyonic
instabilities, i.e. if Z0iZ0j−Z00Zij is positive definite, then the ghost-like instability is avoided
if Z00 > 0.

In the Hamiltonian formalism both types of instability, although physically different, are
formally on an equal footing. Their absence is guaranteed whenever the Hamiltonian is
positive definite. For our action, eq. (26), the Hamiltonian density of the fluctuations reads

H(Π, ϕ) =
1

4Z00
(Π + 2Z0i ∇iϕ)2 − Zij ∇iϕ∇jϕ , (29)

where Π is the conjugate momentum of ϕ, that is Π = 2(Z00 ϕ̇ − Z0i ∇iϕ). H is positive
definite for positive Z00 and negative definite Zij . The latter is a stronger requirement than
the one we found above, since Z0iZ0j is always a positive definite matrix. However here
there is a subtlety. What must be positive definite is not the Hamiltonian density, but rather
its integral in d3x, i.e. the total Hamiltonian. The mixed term ∼ Π∇iϕ that comes from

10



expanding the square in eq. (29) is conserved on the equation of motion, once integrated
in d3x, since its time derivative turns out to be a total gradient. Therefore the integral
H0 =

∫

d3xH0, with

H0(Π, ϕ) =
1

Z00

[

1
4Π2 + (Z0iZ0j − Z00Zij)∇iϕ∇jϕ

]

, (30)

is conserved on the equations of motion of H =
∫

d3xH. Although H0 is not the Hamiltonian,
a sufficient condition for stability (compact orbits) is that H0 be positive definite. Notice that
this condition is weaker than that set by positivity of H, but it coincides with the condition
found from the field equations. In summary, in order for a solution to be stable one needs
that Z00 be positive and that the matrix Z0iZ0j − Zij be positive definite.

Consider now a generic distribution of matter sources for the π field. We stick to the
case in which matter can be described by a fluid. Its energy-momentum tensor is thus of
the form Tµν = (ρ + p)uµuν + p ηµν , where ρ is the rest-frame energy density, p is the rest-
frame pressure, and uµ is the fluid four-velocity. The π field is sensitive only to the trace
T = T µ

µ = −(ρ − 3p), which does not depend on uµ. We consider the case in which the
sources are localized, i.e. their energy-momentum tensor decays at spatial infinity. In such a
case far away from the source the trivial configuration K̃µν = 0, Zµν = −3ηµν is a solution of
the field equations. Moreover, we start with the assumption that p = 0 and ρ ≥ 0, although
we will relax it below. We will show that under these hypotheses the system is stable.

Fix a generic xµ. Zµν is a (x-dependent) symmetric tensor, therefore we have some hope
of diagonalizing it with a (x-dependent) Lorentz transformation. This is not always possible,
since the Minkowski metric ηµν is not positive definite, and the spectral theorem does not
apply. In the Appendix we show that Zµν can be certainly diagonalized with a Lorentz
transformation if the typical velocities of the matter sources are non-relativistic. This is
plausible from a physical point of view, since, roughly speaking, the failure of the spectral
theorem can be traced to a possible strong mixing between space and time that can lead to a
zero-norm eigenvector of Zµ

ν . For relativistic motions of the sources we are not guaranteed
that the diagonalization is possible. In order to proceed we have to assume it, so the result
we are going to find can be applied only if such a diagonalization is possible. Let’s therefore
postulate that there exists a Lorentz frame in which Zµ

ν = diag(z0, z1, z2, z3). In such a
frame eq. (25) reads

F (z) ≡ −2

3

[

(z2
0 + . . . + z2

3) − (z0z1 + z0z2 + . . . + z2z3)
]

= 6 +
ρ

2Λ3M4
≥ 6 . (31)

In order for the system to be locally stable in xµ we want a positive Z00 and a positive definite
Z0iZ0j −Zij . In the Lorentz frame we are using this simply reduces to the requirement that
all zµ’s are negative. In the space of the eigenvalues of Zµ

ν we can associate to this condition
four critical hyperplanes, namely zµ = 0, for µ = 0, . . . , 3. On these hyperplanes the system
is marginally stable. We want to show that these critical hyperplanes do not intersect the
set of solutions of eq. (31). This result would permit us to conclude that the system is
stable. In fact, at ~x → ∞ the system is locally stable, since the K̃µν = 0 configuration is
stable. It could become unstable in moving to finite ~x, but by continuity its trajectory in
the eigenvalues space should cross one of the four critical hyperplanes. If the intersection
between the critical hyperplanes and the set of solutions is null, this cannot happen.
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The proof of the above fact is straightforward. Take a critical hyperplane, for instance
z0 = 0, and impose it as a constraint on the l.h.s. of eq. (31). One gets

F (z)|z0=0 = −2
3

[

(z2
1 + z2

2 + z2
3) − (z1z2 + z1z3 + z2z3)

]

= −1
3

[

(z1 − z2)
2 + (z1 − z3)

2 + (z2 − z3)
2
]

≤ 0 , (32)

while in order to solve eq. (31) F (z) should be larger or equal than 6. In conclusion, the zµ’s
that lie on a critical hyperplane cannot satisfy the field equation.

Of course, this argument does not prove that unstable solutions do not exist. Actually,
as we showed in the previous section, for every locally stable solution there exists a locally
unstable conjugate solution. What this line of reasoning proves is that the sets of locally
stable and locally unstable solutions are topologically disconnected in the eigenvalues space,
and therefore a solution which is locally stable at one point (infinity, in our case) is stable
everywhere. And vice-versa: a solution which is locally unstable at one point is unstable
everywhere. Notice that in the above proof the requirement that the sources are localized
was needed only to ensure that at infinity the trivial configuration K̃µν = 0 is a solution
of the field equation, so that there exists at least one point at which the system is locally
stable. In the case of non-localized sources, if a specific solution is known by other means to
be locally stable at some point, then its stability throughout the Universe is guaranteed by
the same arguments as above.

We have shown that, for sources with zero pressure and positive energy density decaying
at spatial infinity, the solution which is trivial at infinity is stable everywhere. We can relax
all these requirements, in order to find a condition under which the sets of locally stable and
locally unstable solutions in the eigenvalues space come into contact, so that a solution could
in principle be stable somewhere and unstable somewhere else. Allowing for generic ρ and
p, eq. (25) now reads

F (z) = 6 +
(ρ − 3p)

2Λ3M4
. (33)

From this and eq. (32) we see that a critical surface intersects the set of solutions if and only
if

(ρ − 3p) ≤ −12Λ3M4 = −12m2M2
4 . (34)

This is a necessary condition for the development of local instabilities, starting from a solution
locally stable at some point, for instance at infinity.

So far we have dealt with very general features of the classical solutions of the DGP model.
We now move to explicitly derive two interesting solutions and study their properties.

5 de Sitter solution

In refs. [7, 8] it was shown that the large-distance modification of gravity implied by the
DGP model can make a Friedmann-Robertson-Walker Universe accelerate even in absence
of a cosmological constant. In particular, one finds that at late time, when all the energy
density and pressure have redshifted away, the Universe approaches an accelerating phase
with constant Hubble parameter H = m. In other words, a solution of the DGP model
is a four-dimensional de Sitter space with curvature radius L = 1/m, embedded in a five-
dimensional Minkowski bulk. The stability properties of this de Sitter solution were analyzed
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in ref. [11], where it was shown that around this configuration the π field has a ghost-like
kinetic term.

In this section we show that the four-dimensional effective action of the π field, in absence
of matter and cosmological constant, can account for this de Sitter solution. Of course, since
de Sitter space is curved, while we are working in flat space, we have to restrict to a small
patch around x = 0 and look at de Sitter space as a small deformation of Minkowski space.
This is sensible for x ≪ L, where L is the de Sitter curvature radius.

Consider eq. (16) in vacuum, that is set T = 0. We are looking for a maximally symmetric
solution, therefore we consider the ansatz K̃µν = 1

4K̃ηµν . We obtain

K̃ = 4 , K̃µν = ηµν , π̂(x) = −1
2Λ3 xµxµ . (35)

In the language of sect. 3, this is the solution which is conjugate to the trivial configuration
K̃µν = 0. Therefore, we know that it must be unstable. The quadratic action of the small
fluctuations ϕ around this solution in fact is

Sϕ =

∫

d4x
[

−3(∂ϕ)2 − 2
(

K̃µν − ηµνK̃
)

∂µϕ∂νϕ
]

=

∫

d4x 3(∂ϕ)2 , (36)

exactly reversed with respect to the ‘canonical’ one. This is precisely the result of ref. [11]
about the kinetic term of the π field around the de Sitter background.

To check that this solution corresponds locally to de Sitter geometry we must take into
account the mixing between π and the metric perturbation hµν . This is straightforward to do
by noticing that in terms of the Weyl-transformed metric h′

µν = hµν − 1
M4

π̂ηµν the quadratic
Lagrangian, eq. (7), is diagonal, i.e. there is no mixing between π and h′

µν . The solution we
are studying corresponds to h′

µν = 0, so that the metric perturbation is

hµν =
1

M4
π̂ηµν = −1

2m2 ηµν xαxα . (37)

This describes locally a de Sitter space. In fact, by performing a gauge transformation with
parameter ǫµ = 1

4m2 xµxαxα, the metric becomes

h̃µν = hµν + ∂µǫν + ∂νǫµ = m2 xµxν , (38)

and this is exactly the induced metric near x = 0 on the hyperboloid

ηµν xµxν + y2 =
1

m2
, (39)

which describes the embedding in five dimensional flat space of a four dimensional de Sitter
space with curvature radius L = 1/m = LDGP.

We can check explicitly that in the regime of validity of the solution we have found all
higher order interactions, eq. (10), can be consistently neglected. Our solution has π̂ ∼ Λ3x2,
N ′

µ = 0 and h′
µν = 0, so that eq. (10) reduces to

∆Lbdy ∼ mM2
4 ∂(m x)q ∼ m2M2

4 (m x)q−1 , (40)

to be compared with the cubic self-coupling of π, which on the solution is of order Λ6 x2 =
m2M2

4 (m x)2. We can trust our solution only for x ≪ LDGP = 1/m, since we are working
in a nearly flat space. In this regime eq. (40) gives a negligible contribution to the action.
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6 Spherically symmetric solution

As pointed out in refs. [9, 10], one could in principle test the DGP model by solar system
experiments, at distances much smaller than the DGP scale, which instead is of the order of
the Hubble horizon. This is because the correction to the Newton potential of an isolated
body becomes important at distances of the order of the so-called Vainshtein scale,

RV =

(

M

m2M2
4

)1/3

∼
(

RSL2
DGP

)1/3 ≪ LDGP , (41)

where M is the mass of the body and RS its Schwarzschild radius. At smaller distances
the relative importance of this correction is small, of order (r/RV )3/2, but nevertheless non
negligible. An interesting fact is that, as shown in ref. [9], unlike its magnitude, the sign of
this correction depends on the cosmological phase, i.e. on the behaviour of the Universe at
cosmological distances.

In our formalism all the relevant features of the DGP model are encoded in the self-
interacting dynamics of π. We will derive an explicit solution for the field generated by a
point-like source, and show that its properties agree with the above results.

Consider a static point-like source of mass M , located at the origin: T = −M δ3(~x). We
look for a static spherically symmetric solution π̂(r), where r is the radial coordinates. In
such a case the field equations further simplifies; in particular eq. (14) becomes

~∇ ·
[

6 ~∇π̂ − 1

Λ3
~∇(~∇π̂)2 +

2

Λ3
~∇π̂∇2π̂

]

= ~∇ ·
[

6 ~E − 1

Λ3
~∇| ~E|2 +

2

Λ3
~E ~∇ · ~E

]

= ~∇ ·
[

6 ~E + r̂
4

Λ3

E2

r

]

=
M

2M4
δ3(~x) , (42)

where we defined ~E ≡ ~∇π̂(r) ≡ r̂E(r), and we used ~∇ · ~E = 1
r2

d
dr (r2 E). After integration

over a sphere centered at the origin, this reduces to an algebraic equation for E(r),

4πr2

(

6E +
4

Λ3

E2

r

)

=
M

2M4
, (43)

whose solutions are

E±(r) =
Λ3

4r

[

±
√

9r4 + 1
2π R3

V r − 3r2

]

, (44)

where RV is the Vainshtein scale, eq. (41). The solution for π̂ is obtained by integrating E
along r, π̂±(r) =

∫

E±(r)dr.
At small distances from the source the two solutions reduce to

E±(r ≪ RV ) = ± Λ3

4
√

2π

R
3/2
V

r1/2
. (45)

The acceleration induced on a test mass by π is roughly 1
M4

E. The relative correction to the
Newton force is thus of order

Fπ

FNewton
∼ E/M4

M/M2
4 r2

∼
(

r

RV

)3/2

, (46)
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as expected. Notice that the magnitude of the correction does not depend on the solution
chosen, but its sign does. This fact matches to what we mentioned at the beginning of
this section, namely that the sign of the correction should depend on the behaviour of the
Universe at cosmological distances. Indeed, although the two solutions E± are similar to
each other near the source, far away they behave very differently: E+ decays as 1/r2, while
E− blows up as r2. Since E+ at spatial infinity reduces to the trivial configuration K̃µν = 0,
one is tempted to conclude that E− should approach the de Sitter solution found in the
previous section, since the de Sitter and the trivial solutions are conjugate to each other.
However, this is not the case, as one can easily check by noticing that E− does not reduce
to a maximally symmetric configuration at infinity. Indeed, E+ and E− are not conjugate
in the sense of sect. 3, but rather they are ‘spatially’ conjugate, in the following sense. E+ is
constant in time, therefore it produces a purely spatial K̃+

µν , that is K̃+
µ0 = 0. By the same

arguments of sect. 3 one easily concludes that another static solution of the field equations
is K̃ij = 3

2δij − K̃+
ij . E− corresponds precisely to this solution.

Since we are considering a localized source, with positive energy density, we know from
the results of sect. 4 that the solution trivial at infinity, E+, is stable everywhere against
small fluctuations. We can check this fact explicitly. For π̂ = π̂(r), eq. (21) in spherical
coordinates reads

Sϕ =

∫

d4x
√

g

[(

3 +
2

Λ3
∇2π̂

)

(ϕ̇2 − gij ∂iϕ∂jϕ) +
2

Λ3
∇i∇jπ̂ gikgjl ∂kϕ∂lϕ

]

, (47)

where gij = diag(1, r2, r2 sin2 θ) is the metric tensor. The interesting non-zero components
of the connection are Γr

θθ = −r and Γr
φφ = −r sin2 θ, so that

∇r∇rπ̂ = E′ , ∇θ∇θπ̂ = r E , ∇φ∇φπ̂ = r sin2 θ E , (48)

while ∇2π̂ = E′ + 2
rE. In the end we have

Sϕ =

∫

d4x
√

g

{[

3 +
2

Λ3

(

E′ +
2E

r

)]

ϕ̇2

−
[

3 +
4

Λ3

E

r

]

(∂rϕ)2 −
[

3 +
2

Λ3

(

E′ +
E

r

)]

(∂Ωϕ)2
}

, (49)

where we defined (∂Ωϕ)2 as the angular part of (~∇ϕ)2,

(∂Ωϕ)2 ≡ (~∇ϕ)2 − (∂rϕ)2 =
1

r2
(∂θϕ)2 +

1

r2 sin2 θ
(∂φϕ)2 . (50)

By direct inspection of the solution E+ it is straightforward to see that the factors enclosed
in square brackets are everywhere positive, thus proving the stability of the solution.

Similarly to the de Sitter case studied in the previous section, also on this solution higher
order interactions of the type of eq. (10) give a negligible contribution to the action, even well
inside the Vainshtein region, where the extrinsic curvature is getting larger and larger. To
see this, it is sufficient to plug into eq. (10) the behaviour of the solution for RS ≪ r ≪ RV ,

namely π̂ ∼ Λ3R
3/2
V /r1/2, h′

µν ∼ RS/r and N ′
µ = 0. The result is

∆Lbdy ∼ mM2
4

RS

(

RS

r

)q/2+s+1

, (51)
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which clearly shows that as long as r ≫ RS the dominant contribution comes from the cubic
self-coupling of π, i.e. from the term with q = 3 and s = 0. Like in the de Sitter case, as
long as the space is nearly flat the leading interaction term is the cubic self-coupling of π, in
agreement with the general argument given in sect. 2.

We want to conclude with a comment on the behaviour of the solution in the presence
of several sources. Of particular interest for the discussion of the following section is the
behaviour of the effective kinetic term coefficient Zµν . In the Vainshtein region Zµν , the
extrinsic curvature Kµν and the Riemann tensor Rµ

νρσ scale as

Z ∼ KLDGP ∼
√

R LDGP ∼
√

RS LDGP/r3/2 , (52)

where here on we neglect the indices. Notice, in particular, that the extrinsic and Riemann
curvatures are associated to the same length scale: K ∼

√
R. For the asymptotic linear field

the relation was instead K ∼ RLDGP ≪
√

R. Now, the relation Z ∼
√

R LDGP is valid also in
more general situations. For instance we have checked it explicitly in the case of a spherical
matter distribution not localized at one point. It is also easy to derive it for the interesting
case of two (several) pointlike sources, for instance the Sun and the Earth. As M⊙ ≫ M⊕ we
can neglect the Earth contribution in the asymptotic field. M⊕ becomes relevant only close
enough to Earth. In this region we can approximately treat the Sun field as a background

giving just rise to a wave function Z⊙ ∼ √
M⊙ LDGP/(M4r

3/2
⊕ ) where r⊕ is the Earth-Sun

distance. By defining a canonical field π̂⊙ =
√

Z⊙π̂, the field equation close to Earth is
just eq. (42) with renormalized values Λ → Λ⊙ ≡ Λ

√
Z⊙, M4 → M4

√
Z⊙. Then applying

the previous results we have that the renormalized Vainshtein radius for the Earth field is
R⊙

3
V = M⊕/(M4Λ

3Z2
⊙) = r3

⊕M⊕/M⊙. This is precisely the distance from Earth at which the
Riemann curvature becomes dominated by the Earth field. By applying the results of this
section, at shorter distances the full π̂ wave function is just Z ∼ Z⊙(R⊙V /r)3/2 ∼

√
R LDGP,

where R is now dominated by the Earth field. Notice in particular that R⊙V is larger than
the Earth-Moon distance, so that the effects of the π field on the Moon rotation [9, 10] can
be studied by neglecting the presence of the Sun in first approximation. This is precisely
like in GR: the Sun’s tidal force can be neglected when studying the Moon’s orbit in lowest
approximation.

7 Quantum effects

Our discussion was until now classical. In order to characterize quantum versus classical
effects it is useful to keep ~ 6= 1 and write the Lagrangian eq. (13) in terms of the non-
canonical field π and the the 4 and 5D Newton’s constants G4 and G5,

L = −G4

G2
5

(∂π)2 +
1

G5
(∂π)2∂2π +

G4

G5
πT (53)

(throughout this section we will neglect O(1) factors and be schematic with the contraction
of derivative and tensor indices). At the classical level physical quantities do not depend
on the reparametrizations π → σπ and also L → ηL, with σ, η constants. For instance,
in the case of a localized source T = Mδ3(x), the only invariant quantity is precisely the
Vainshtein scale R3

V = MG2
5/G4. Indeed we can also define a classical expansion parameter,
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Figure 1: The graphs contributing to the 1-loop effective action, eq. (55).

measuring the size of classical non linearities, by taking the ratio of the second and first
terms in the Lagrangian αcl = G5∂

2π/G4 ∼ K̃. Notice that αcl is invariant under the
above reparametrizations. In the case of the spherical solution it is just a function of r/RV .
At the quantum level the Lagrangian becomes a physical quantity, L → ηL is no longer
a ‘symmetry’, so that there is an additional physical length defined by L6

Q = ~G4
5/G

3
4 or

equivalently an energy Λ = ~/LQ. For LDGP of the order of the Hubble length we have
LQ ∼ 1000 km. This analysis can be compared to the case of ordinary GR in 4D: the
analogue of the Vainshtein scale is the Schwarzschild radius, while the classical expansion
parameter is simply the gravitational perturbation hµν = gµν−ηµν . Similarly, at the quantum
level the Planck length is the analogue of LQ.

Like we have defined a classical expansion parameter αcl we can define a quantum ex-
pansion parameter αq = (L2

Q∂∂). In the case of a spherical potential we have αq = (LQ/r)2.
Then we expect that any physical quantity A will be expandable with respect to the value
A0 it takes in the linearized classical limit as a double series

A − A0

A0
=
∑

n,m

anmαn
q αm

cl , (54)

with n,m positive integers. The dependence on only integer powers of αq follows from
Lorentz symmetry. As an example of a quantity of interest we could consider the action2. As
shown in ref. [11], and as evident from eq. (22), the loops of the quantum fluctuation field ϕ
generate terms involving at least two derivatives on the external background, i.e. involving
K̃µν = −∂µ∂ν π̃/Λ3 and its derivatives. In particular the tree level cubic interaction is not
renormalized. For instance, cutting off the UV divergences at the scale Λ, the structure of
the 1-loop correction is

Γ1−loop =
∑

m

[

amΛ4 + bm∂2Λ2 + ∂4(cm lnΛ + Im)
]

(

∂∂π̃

Λ3

)m

. (55)

The graphs contributing to Γ1−loop are depicted in fig. 1; m counts the number of external
legs, and by Im we indicate the finite parts. Notice that Γ1−loop/Lcl = Γ1−loop/(∂π)2 has
the structure of eq. (54). We should stress however that the power divergent terms are
strictly speaking not calculable, in the sense that they fully depend on the UV completion.
On the other hand the log divergent terms are also associated with infrared effects and
are thus calculable. They correspond in eq. (54) to powers of n that are multiple of 3:

α3
q ∼ ~

G4

5

G3

4

∂6 = E6/Λ6 is the genuine loop counting parameter. For instance by working in

2Notice that although the action is not a physical quantity at the classical level its relative variation δS/S0 is
physical, and indeed defines αcl.
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dimensional regularization we would only get the minimal set of divergences that are required
for the consistent definition of the theory, and these are precisely the logarithmic ones.

Now the important remark is that when the classical parameter αcl is larger than O(1)
the expansion in eq. (54) breaks down even if αq ≪ 1. What basically happens is that large
classical effects pump up the quantum corrections, and the result becomes fully dependent
on the series of counterterms. Both power and log divergent terms at αcl > 1 formally swamp
the classical action for a large enough number of external legs (m in eq. (54)). This implies
that the details of the UV completion of DGP in general dominate the physics for αcl > 1
or at distances from a point source that are shorter than the Vainshtein radius RV . Then
we should not even be able to compute the gravitational potential at solar system distances,
although they are still much bigger than the genuine quantum length LQ. A similar problem
has been pointed out in the case of massive gravity [15].

There are however indications that the situation may not be necessarily as bad as it
seems. First, as we have already remarked, the problem arises when expanding in the num-
ber of external legs, that is when expanding in the classical background field. For any given
amplitude with fixed number of legs the loop expansion, sum over n in eq. (54), is convergent
as long as r > LQ. Second the classical theory we are dealing with makes perfect sense even
below the Vainshtein scale as we have proven in the previous sections. For a well defined class
of energy-momentum sources and of boundary condition at spatial infinity, no pathology or
ghostlike instability is encountered in the π system. Indeed even if the interaction term
involves four derivatives, the quadratic action around the background remarkably contains
quadratic terms that have only up to two derivatives: this prevents the appearance of ghost-
like modes. This should be compared to what happens when higher derivative corrections
to a kinetic term become important and ghost states appear: in those cases it is mandatory
to assume that extra quantum effects eliminate the problem, or better to declare the regime
of validity of the theory to be limited. Based on these two remarks we want to consider the
structure of the quantum effective action more closely. As we did previously we decompose
π into classical background and quantum fluctuation: π = πcl +ϕ. The tree level Lagrangian
for the fluctuation is

Lϕ = Zµν∂µϕ∂νϕ +
1

Λ3
∂µϕ∂µϕ�ϕ (56)

and Zµν , see eq. (23), contains all the dependence on the classical background πcl. In the
regions where classical non-linearities are large, the eigenvalues of the kinetic matrix become
large, Z ∼ K̃ ≫ 1. Now, as long as Z does not lead to ghosts, a large Z will enhance the
gradient energy and suppress quantum fluctuations in ϕ. This somewhat contradicts our
previous conclusion that things are out of control when K̃ ≫ 1. In order to simplify the
discussion and the notation consider a toy model where the background matrix reduces to a
scalar Zµν ≡ −ηµνZ. As long as Z varies slowly over space, it makes sense to define a local
strong interaction scale Λ̃(x) = Λ

√

Z(x), which describes the local scattering of quantum
excitations ϕ. Of course this scale is obtained by writing the action in terms of a locally
canonical field ϕ̂ = ϕ ·

√
Z, and the definition makes sense as long as the typical distance by

which Z changes is itself much bigger than 1/Λ̃(x). It is easy to calculate the divergent part
of the 1-loop effective action Γ1−loop by working with the canonical field ϕ̂. The dependence
from Z in Γ1−loop comes from two sources: 1) the Jacobian of the rescaling in the path
integral, 2) a spacetime dependent mass term −m2(x)ϕ̂2 generated by the kinetic term after
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rescaling,

m2(x) =
1

4

(

∂µZ∂µZ

Z2

)

− 1

2

∂2Z

Z
. (57)

The contribution from the mass term corresponds to the usual Coleman-Weinberg effective
potential

ΓCW
1 =

1

16π2

(

Λ2
UVm2 − (m2)2 lnΛUV + Γ̂CW

1

)

, (58)

where the finite part Γ̂CW
1 is expected to be a fairly complicated non-local expression that

fully depends on the spacetime behaviour of m2. For instance, in a central field where Z ∝ ra,
like in the Vainshtein region, we have m2 ∼ 1/r2 and we expect Γ̂CW

1 = −(m2)2 ln r plus
terms of order m4, but without log enhancement. On the other hand the Jacobian factor
yields formally

ΓJ
1 = −1

2
δ4(0) ln Z . (59)

This term does not depend on the derivatives of Z, and should correspond to a quartic
divergence. We can make this explicit by regulating the delta function as δ4(0) = Λ4

UV/(2π)4.
Notice that in principle the ultraviolet cutoff ΛUV can be as high as the local scale Λ̃(x). To
comment this results let us focus first on the logarithmic divergent term, as it is completely
unambiguous. We see that when Z ≫ 1 this term does not blow up, as one could have
concluded by looking at the series expression eq. (55). The effects of a large Z are resummed
in the effective mass m2, in a form that depends only on the size of the relative derivatives
∂nZ/Z. For instance in the Vainshtein region the logarithmic part leads to a correction to
the classical action which is of order

1

16π2

1

r4
ln(ΛUVr) . (60)

This should be compared with the classical action which is of order Λ4(ΛRV )2(RV /r)5/2 =
r2Λ̃6(r): we find that the quantum correction is subdominant for r > rc = 1/(Λ4R3

V ) =
LQ/(M4RS). Indeed rc is precisely defined by the equality rc = Λ̃−1(rc) as one should have
expected. Notice that for the interesting cases of macroscopic sources rc is much shorter
that LQ = 1/Λ = 1000 km. We will have more to say on this below. We have more
comments to make on this simple 1-loop computation. Eq. (58), when expanded in powers
of K̃ = Z − 1, corresponds to the calculation of the cm coefficients of eq. (55). This object
describes the 1-loop RG evolution of the effective Lagrangian. On the other hand the initial
conditions for this evolution at some scale, for instance Λ, are determined by arbitrary
local counterterms contained in the In. In general, as long as locality and the symmetries
are preserved, there is little restriction on these terms from the effective Lagrangian view
point. In particular they could become large just when Z is large. For instance a function
of the form ZN(∂Z/Z)4 would be a perfectly acceptable counterterm, with a perfectly fine
analytic and local expansion around the point K̃ = Z − 1 = 0. For N ≫ 1 a term like
this would dominate the action below the Vainshtein scale. What distinguishes a damaging
term like this from the mild effects that we have explicitly computed? The difference is
very simple: this term depends on the absolute magnitude of Z, while the others don’t.
After the rescaling, the dimensionful parameters in the tree level ϕ̂ Lagrangian are given by
Λ̃ ≡ Λ

√
Z and by the derivatives ∂Z/Z ≡ 2∂Λ̃/Λ̃, ∂2Z/Z ≡ ∂2Λ̃2/Λ̃2, etc. The operator in

question cannot be written just in terms of these local scales since ZN = Λ̃2N/Λ2N and the
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original scale Λ does not influence local quantities in the tree approximation. We can then
characterize in a fairly simple way the class of 1-loop counterterms with four derivatives (log
divergences) for which perturbativity is preserved below the Vainshtein scale (in fact below
LQ): it is given by local polynomials of Λ̃, ∂2Λ̃, etc., weighted by the appropriate powers
of Λ̃ to match dimensionality. Nothing particularly interesting is learned by considering the
structure of the power divergences. After all this is not surprising since they are totally
scheme dependent. However the lesson we drew from the logarithmic ones is clear enough
to allow us to formulate a simple consistent requirement, a conjecture, valid for all type of
counterterms, and to all orders, such that the quantum corrections remain under control
way below the Vainshtein scale. The requirement is that the only dimensionful quantity
determining the local counterterms be the local scale Λ̃(x),

LCT = Λ̃(x)4F

(

∂

Λ̃

)

, (61)

where F schematically represents any infinite polynomial in ∂Λ̃, ∂2Λ̃, etc. Notice that the
above counterterm Lagrangian should be added with Λ̃ written in terms of the physical field
π = πcl + ϕ, as this decomposition is arbitrary. Then we need to check that eq. (61) does
not lead to new interactions for the quantum field ϕ associated to scales lower than Λ̃. If
that were the case our ansatz would not be not self consistent since beyond 1-loop it would
introduce a new scale in the effective action for the background field. However it is easy to
verify that this consistency check is satisfied. Notice that the minimal set of counterterms
that are needed in DR with minimal subtraction belongs to this class. However our definition
is more general. For instance a term with no derivative Λ̃4 is consistent with eq. (61) but
is not generated in DR, since it corresponds to a quartic divergence. The physical meaning
of our ansatz is also clear. The scale Λ̃ truly represents the scale at which new degrees of
freedom come in. The UV divergences in the low energy effective theory are cut off at this
scale. For instance the vacuum energy is essentially Λ̃4 up to small derivative corrections
associated to the space-time variation of Λ̃. From the point of view of the fundamental UV
theory the field Z = 1 + K̃ is a sort of dilaton that controls the mass gap Λ̃. At the points
where Z goes through zero the effective description breaks down since the gap vanishes and
new massless states become relevant. This is another way to argue that the points where
Z is negative, the ghost background, are outside the reach of our effective field theory and
should be discarded.

We based all our discussion on the simplified case Zµν = −Zηµν , in which a rescaling of
ϕ allowed us to define the running scale Λ̃(x). In the general case this cannot of course be
done. The procedure then is to work at each point with a short distance expansion of the ϕ
propagator,

〈ϕ(x + y)ϕ(x − y)〉 =
1

Zµν(x)yµyν
+ d1

yρyµyν∂ρZµν(x)

(yZy)2
+ . . . , (62)

where the dimensionless coefficients (functions of x) d1, . . . are calculated in perturbation
theory around a slowly varying Z background. In spite of this more complicated tensor
structure the discussion is qualitatively the same: the 1/Z in the propagator arrange with
the 1/Λ3 in the vertices to yield a sort of running scale Λ̃(x). However the dynamics at the
scale Λ̃ will not be Lorentz invariant. Anyway we stress that in the simple interesting case
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of a spherical source inside the Vainshtein region we have

Zµν ≃ (RV /r)3/2Aµν , (63)

where Aµν is a constant matrix. Then a simple rescaling of the quantum field is sufficient to
study the effective action.

At this point one will wonder about naturalness. Are we advocating an incredibly tuned
structure of counterterms not dictated by any symmetry but just by our desire to save the
model? From the point of view of the effective theory expanded around π = 0 it looks like we
are making a big tuning. This was the viewpoint of ref. [11] for DGP, and, earlier, of ref. [15]
for massive gravity. However, as we have proven in the first part of this paper, the validity of
the classical theory extends well beyond the point π = 0. By validity of the classical theory
here we include the fact that Λ̃ never crosses 0. All we have done in this section is to demand
uncalculable UV effects not to drastically perturb this picture throughout the patch in field
space where the classical theory works. The fact that this patch is sensibly bigger than the
point π = 0 leads to stronger constraints on the counterterms. But when looking at the
region π 6= 0 there is more to say. Around the points with ∂∂π̂ ≫ Λ3 our ansatz can indeed
be motivated by a symmetry: scale invariance3. In the limit ∂∂π̂ ≫ Λ3 we can neglect the
quadratic kinetic term and work just with the cubic Lagrangian at tree level. The cubic
Lagrangian is obviously scale invariant by assigning π̂ dimension zero. We can also trivially
absorb the powers of Λ in the π̂ field: π̂ = Λπ̃. The background π̃cl spontaneously breaks
scale invariance. In particular it generates the mass scale Λ̃2 ∼ ∂∂π̃cl. Then it is obvious that
our ansatz preserves scale invariance. The original quadratic kinetic term now reads Λ2(∂π̃)2

representing a soft explicit breaking of scale invariance. When treating this term as a small
perturbation it is then natural to generalize our eq. (61) to include all the terms proportional
to positive powers of Λ2/Λ̃2. Now, one should be aware that scale invariance, unlike other
global symmetries, cannot be readily used to naturally enforce parameter choices. Basically
this is because conformal invariance in the interesting cases is never exact in the far UV. For
instance quantum gravity breaks it. This limits the use of conformal symmetry as a substitute
of supersymmetry in attacking the gauge hierarchy problem (see for instance a discussion in
ref. [23]). However one can imagine a situation where the scale M at which a models flows
to a conformal point is much smaller than the physical and conformal breaking cut-off ΛUV.
Then even though at the fixed point there may exist relevant deformations their coefficient
will be naturally small (in units of M) if the corresponding operator is irrelevant at the
UV scale. An example could be a 4-fermion term suppressed by 1/Λ2

UV in the microscopic
theory, which becomes relevant at the fixed point thanks to a big anomalous dimensions.
Such an example suggests that a theory may remain naturally scale invariant in a wide range
of scales below the (conformal breaking) cut-off. In our case conformal symmetry is surely
broken at the scale M5, but we do not need to go that high in energy. This keeps open
the possibility that our ansatz may indeed be technically natural. It would be interesting to
investigate these issues in more detail, perhaps trying to come up with an explicit realization
of a conformally invariant completion.

Finally we want to discuss the physical implications of our results. The running scale
close to a spherical source can also be written as

Λ̃(r) = M
1

2

5 R
1

4

Sr−
3

4 , (64)

3We thank Sergei Dubovsky for waking us up on this.
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from which the critical length rc at which the classical background πcl stops making sense is
just rc = 1/RSM2

5 . We have rc < RS for RS > 1/M5 ∼ 1 fm, so that the quantum effects in
the field π have no implication on any relevant astrophysical black hole. Of course we still
have to study the classical effects of the field π on 4D black holes.

In the presence of several macroscopic sources, like in the solar system, eq. (64) is dom-
inated by the one generating the biggest gravitational tidal effect, i.e. the one dominating
the Riemann tensor ∼ RS/r3. At the surface of the Earth it is the Earth field itself that
dominates Λ̃ and we find

Λ̃−1
⊕ ∼ 1 cm . (65)

In principle this is the length scale below which we cannot compute the gravitational potential
at the surface of the Earth! Notice that this scale exceeds by almost 2 orders of magnitude
the present experimental bound on modifications of gravity [24, 25, 26]. Notice also that
we cannot play with M5 in order to increase Λ̃⊕ by 102. This is because Λ̃⊕ ∝

√
M5 while

LDGP ∝ 1/M3
5 so that we would lower at the same time LDGP down to the unacceptably

low value of ∼ 1 kpc. However the 1 cm scale we are discussing is the one at which π, not
the usual graviton, goes into a quantum fog. The graviton at this scale is still very weakly
coupled. Moreover the field π at distances just a bit bigger that 1 cm is a very small source
of macroscopic gravity, its contribution relative to the ordinary one being of order

(

R⊕

RV

)
3

2

≡ Λ2

Λ̃2
⊕

∼ 10−16 . (66)

Then it is reasonable to expect that whatever UV physics will take over below 1 cm it will
not raise the effects of this sector on the gravitational potential by 16 orders of magnitude
right away. Nonetheless this result may be viewed as yet another motivation to study the
gravitational forces below a mm.

8 Outlook

We conclude by briefly mentioning some directions in which our analysis could be extended.
First of all, there is the issue of stability of time-dependent classical solutions. As we have
already stressed, our proof of classical stability is rigorously valid only for matter sources
with non relativistic velocities. It would be interesting to understand to what extent the
stability is guaranteed in the presence of relativistic sources. Perhaps one can encounter
astrophysical or cosmological situations in which the kinetic Lagrangian of the fluctuation
around the background passes through zero in some spacetime region. Such a region would be
characterized by a local scale Λ̃ = 0. This clearly indicates a breakdown of the effective theory,
and in principle one expects unsuppressed quantum effects to take over, with interesting
phenomenological signatures. Of course these are, by definition, out of the reach of the
effective theory, and we can say nothing about them without a UV completion of the model.

On the other hand it would also be interesting to study whether the approximate confor-
mal symmetry of our ansatz can tell us more about the UV completion. Notice in passing
that by neglecting the original quadratic kinetic term, the π-sector becomes a critical4 ghost

4The kinetic term is not negative but zero.
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condensate model. It is the presence of a classical energy-momentum source, and not the
π self-interaction, that causes the π to condense, giving thus rise to a well defined effective
field theory.

Another point which may require extra study concerns 4D black holes. Are they different
from those of ordinary GR? The fact that the field π, when approaching the Schwarzschild
radius, gives a more and more negligible correction to the Newton force suggests that black
holes should be unaffected by its presence. However the very expansion we use breaks down
close to the Schwarzschild radius, as shown by eqs. (10, 51). Therefore a (numerical) study
of the exact solution may be required. Of course the problem we are encountering here is
just that close to the horizon we cannot consider the brane as approximately flat. A better
viewpoint is gained by considering the full Einstein equations at the boundary in eq. (18).
In the region RS ≪ r ≪ RV the extrinsic curvature term, which controls deviations from
GR, represents a small perturbation. This can be phrased as

R(g) ∼
√

RµνRµν ∼ K

LDGP
=

1

LDGP

√

RS

r3
≪
√

RµνρσRµνρσ ∼ RS

r3
, (67)

corresponding to the fact that the geometry is approximately Schwarzschild. The only way
this state of things can drastically change is if the extrinsic curvature develops a singularity
while approaching the Schwarzschild region. Without an explicit computation we cannot
exclude this possibility, but we find it very unlikely. In analogy with GR, the horizon should
not be a special locus from the point of view of the curvature.

Finally, it would be worth analyzing in more detail the connection between DGP and
massive gravity, and investigating the possibility that our results, or some of them, can be
exported to the latter. This is far from trivial, since massive gravity apparently doesn’t share
with DGP two remarkable features that turned out to be crucial in our analysis: the fact
that the equation of motion for the strongly interacting field depends algebraically on the
coefficients of the quadratic action around the background, and the absence in that action
of terms with more than two derivatives.
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Note added

In a recent paper ref. [27] it was also argued that the UV completion of DGP should not
destroy predictivity. Such a claim is in the same spirit of our paper, although ref. [27] is
mostly based on an interesting σ-model version of DGP, where there are just scalar fields.
In that toy model there is no analogue of our π field, with all its associated peculiarities, so
that it is not immediately clear to us that there is a direct connection to our work. It would
be interesting to further investigate this possibility.
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A Diagonalization of Zµν in the non-relativistic limit

In this Appendix we want to prove that whenever the matter sources have non-relativistic
velocities the tensor Zµν is diagonalizable with a Lorentz transformation.

First, from the very definition of Zµν , eq. (23), we see that if K̃µν is diagonalizable, so is
Zµν . Given K̃µν in a generic frame, by means of a spatial rotation we can always align the
spatial vector K̃0i to the x axis and cast K̃µν in the form

K̃µν =









k0 k01 0 0
k01 k1 ⋆ ⋆
0 ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆









. (68)

Now, the point is that if by means of a boost along x we succeed in diagonalizing the upper-
left 2×2 block we are done, since then by a spatial rotation we can diagonalize the full matrix.
The problem is thus reduced to the diagonalization of a 2×2 symmetric tensor with a boost,
i.e. to find two real eigenvectors of the matrix

K̃α
β =

(

−k0 −k01

k01 k1

)

, (69)

orthonormal with respect to the 2D Minkowski metric ηαβ (now the indices α and β run over
0 and 1). The eigenvalues of K̃α

β are

λ± = 1
2(k1 − k0) ± 1

2

√

(k1 + k0)2 − 4k2
01 , (70)

which are real and distinct as long as the off-diagonal element is small, |k01| < 1
2 |k1 + k0|.

In such a case there exist two real eigenvectors, orthonormal with respect to ηαβ . When
instead |k01| → 1

2 |k1 + k0| the two eigenvalues become equal, there is only one eigenvector
and it has zero norm. Beyond this point, when |k01| > 1

2 |k1 + k0|, both the eigenvalues and
the eigenvectors are complex.

Now we want to make contact with the physics. The tensor K̃µν is related to the second
derivatives of π, K̃µν = − 1

Λ3 ∂µ∂νπ, so that

k0 = − 1
Λ3 π̈ , k01 = − 1

Λ3 ∂xπ̇ , k1 = − 1
Λ3 ∂2

xπ . (71)

If the matter sources are stationary we can certainly choose π to be independent on time.
In such a case k0 = k01 = 0. Now we can look at the case in which the sources are evolving
with non-relativistic velocities as a perturbation of the stationary case. In particular, if the
typical velocity of the sources is v, then we expect that the time derivatives of π will be
suppressed by powers of v with respect to the spatial gradients, namely

k0 ∼ v2 k1 , k01 ∼ v k1 . (72)

In the non-relativistic case, v ≪ 1, the two eigenvalues in eq. (70) are certainly real and
distinct,

λ+ = k1 −
k2
01

k1
+ O(v3 k1) , λ− = −k0 +

k2
01

k1
+ O(v3 k1) . (73)

This shows that for non-relativistic sources the 2×2 matrix K̃α
β is diagonalizable with a

Lorentz boost, so that the full 4×4 K̃µν is diagonalizable, and so is Zµν .
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