22 research outputs found

    Genome-Wide Association Study Implicates Chromosome 9q21.31 as a Susceptibility Locus for Asthma in Mexican Children

    Get PDF
    Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma

    Ancient host shifts followed by host conservatism in a group of ant parasitoids

    No full text
    While ant colonies serve as host to a diverse array of myrmecophiles, few parasitoids are able to exploit this vast resource. A notable exception is the wasp family Eucharitidae, which is the only family of insects known to exclusively parasitize ants. Worldwide, approximately 700 Eucharitidae species attack five subfamilies across the ant phylogeny. Our goal is to uncover the pattern of eucharitid diversification, including timing of key evolutionary events, biogeographic patterns and potential cophylogeny with ant hosts. We present the most comprehensive molecular phylogeny of Eucharitidae to date, including 44 of the 53 genera and fossil-calibrated estimates of divergence dates. Eucharitidae arose approximately 50 Ma after their hosts, during the time when the major ant lineages were already established and diversifying. We incorporate host association data to test for congruence between eucharitid and ant phylogenies and find that their evolutionary histories are more similar than expected at random. After a series of initial host shifts, clades within Eucharitidae maintained their host affinity. Even after multiple dispersal events to the New World and extensive speciation within biogeographic regions, eucharitids remain parasitic on the same ant subfamilies as their Old World relatives, suggesting host conservatism despite access to a diverse novel ant fauna

    Propaganda, Crypsis, and Slave-making

    No full text

    Methods for Detecting Interactions between Imprinted Genes and Environmental Exposures Using Birth Cohort Designs with Mother-Offspring Pairs

    No full text
    Genomic imprinting is a form of epigenetic regulation in mammals in which the same allele of a gene is expressed differently depending on the parental origin of the allele. Traditionally, the detection of imprinted genes that affect complex diseases has been focused on linkage designs with pedigrees or case-parent designs with case-parent trios. In the past two decades, the birth cohort design with mother-offspring pairs has been applied to understand better the effect of environmental influences during pregnancy and beginning of life on the growth and development of children. No work has been done on the detection of imprinted genes using birth cohort designs. Moreover, although the importance of imprinting has been well recognized, no study has looked at how environmental exposures modify the effects of imprinted genes. In this study, we show that the proposed imprinting test using the birth cohort design with mother-offspring pairs is an efficient test for testing the interactions between imprinted genes and environmental exposures. Through extensive simulation studies and a real data application, the proposed imprinting test has demonstrated much improved power in detecting gene-environment in teractions than that of a test assuming the Mendelian dominant model when the true underlying genetic model is imprinting
    corecore