63 research outputs found

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations

    Bovine Tuberculosis at the Wildlife-Livestock-Human Interface in Hamer Woreda, South Omo, Southern Ethiopia

    Get PDF
    Bovine tuberculosis (BTB) is endemic in cattle in the Ethiopian Highlands but no studies have been done so far in pastoralists in South Omo. This study assessed the prevalence of bovine tuberculosis (BTB) at an intensive interface of livestock, wildlife and pastoralists in Hamer Woreda (South Omo), Ethiopia. A cross-sectional survey including a comparative intradermal skin testing (CIDT) was conducted in 499 zebu cattle and 186 goats in 12 settlements. Sputum samples from 26 symptomatic livestock owners were cultured for TB. Fifty-one wildlife samples from 13 different species were also collected in the same area and tested with serological (lateral flow assay) and bacteriological (culture of lymph nodes) techniques. Individual BTB prevalence in cattle was 0.8% (CI: 0.3%–2%) with the >4 mm cut-off and 3.4% (CI: 2.1%–5.4%) with the >2 mm cut-off. Herd prevalence was 33.3% and 83% when using the >4 and the >2 mm cut-off respectively. There was no correlation between age, sex, body condition and positive reactors upon univariate analysis. None of the goats were reactors for BTB. Acid fast bacilli (AFB) were detected in 50% of the wildlife cultures, 79.2% of which were identified as Mycobacterium terrae complex. No M. bovis was detected. Twenty-seven percent of tested wildlife were sero-positive. Four sputum cultures (15.4%) yielded AFB positive colonies among which one was M. tuberculosis and 3 non-tuberculous mycobacteria (NTM). The prevalence of M. avium-complex (MAC) was 4.2% in wildlife, 2.5% in cattle and 0.5% in goats. In conclusion, individual BTB prevalence was low, but herd prevalence high in cattle and BTB was not detected in goats, wildlife and humans despite an intensive contact interface. On the contrary, NTMs were highly prevalent and some Mycobacterium spp were more prevalent in specific species. The role of NTMs in livestock and co-infection with BTB need further research

    Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads

    Get PDF
    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data- sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes
    • …
    corecore