63 research outputs found

    Early childhood caries in preschool children of Kosovo - a serious public health problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though it has been widely studied, early childhood caries (ECC) remains a serious public health problem, especially in countries where there is no national program of oral health assessment and no genuine primary oral health care, such as in Kosovo. The purpose of this study was to assess the prevalence of ECC and analyze caries risk factors.</p> <p>Methods</p> <p>The subjects were 1,008 preschool children, selected by stratified random cluster sampling, in the municipality of Prishtina, capital of Kosovo. Data were collected through clinical examination and interviews. Dmft data were recorded according to WHO criteria. Bacterial examination (CRT bacteria test) and plaque test of Greene-Vermillion were used.</p> <p>Results</p> <p>The mean dmft of preschool children was found to be 5.8. The prevalence of ECC was 17.36%, with a mean dmft of 11 ± 3.6. Streptococcus mutans prevalence in ECC children was 98%. A significant correlation between dmft and S mutans counts (≥10<sup>5 </sup>CFU/mL saliva) was demonstrated. A correlation was also found between daily sweets consumption and dmft in children with ECC (<it>P </it>< 0.001). Comparing the dmft of ECC children and duration of bottle feeding showed a statistical correlation (<it>P </it>< 0.001). The mean plaque test was 1.52. None of the examined children had ever used fluoride.</p> <p>Conclusion</p> <p>The prevalence of ECC was high among preschool children in the municipality of Kosovo. We recommend increasing parents' knowledge of proper feeding habits and oral health practices, and increasing preschool children's accessibility to dental services.</p

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria

    No full text
    Mitochondrial permeability transition (PT) is a non-selective inner membrane permeabilization, typically promoted by the accumulation of excessive quantities of Ca2+ ions in the mitochondrial matrix. This phenomenon may contribute to neuronal cell death under some circumstances, such as following brain trauma and hypoglycemia. In this report, we show that Ca2+-induced brain mitochondrial PT was stimulated by Na+ (10 mm) and totally prevented by the combination of ADP and cyclosporin A. Removal of Ca2+ from the mitochondrial suspension by EGTA or inhibition of Ca2+ uptake by ruthenium red partially reverted the dissipation of the membrane potential associated with PT. Ca2+-induced brain mitochondrial PT was significantly inhibited by the antioxidant catalase, indicating the participation of reactive oxygen species in this process. An increased detection of reactive oxygen species, measured through dichlorodihydrofluorescein oxidation, was observed after mitochondrial Ca2+ uptake. Ca2+-induced dichlorodihydrofluorescein oxidation was enhanced by Na+ and prevented by ADP and cyclosporin A, indicating that PT enhances mitochondrial oxidative stress. This could be at least in part a consequence of the extensive depletion in NAD(P)H that accompanied this Ca2+-induced mitochondrial PT. NADPH is known to maintain the antioxidant function of the glutathione reductase/peroxidase and thioredoxin reductase/peroxidase systems. In addition, the occurrence of mitochondrial PT was associated with membrane lipid peroxidation. We conclude that PT further increases Ca2+-induced oxidative stress in brain mitochondria leading to secondary damage such as lipid peroxidation.7961237124

    Diazoxide protects against methylmalonate-induced neuronal toxicity

    No full text
    Methylmalonic acidemia is an inherited metabolic disorder that leads to brain damage associated to the accumulation of methylmalonic acid (MMA) and impairment of energy metabolism. We demonstrate here that treatment with diazoxide, an agonist of mitochondrial ATP-sensitive K+ channels (mitoK(ATP)), can prevent death promoted by treatment with MMA in PC12 cells and freshly prepared rat brain slices. This diazoxide effect was reversed by 5-hydroxydecanoate, a mitoK(ATP) antagonist, confirming it occurs due to the activity of this channel. Diazoxide was not capable of preventing inner membrane potential loss promoted by MMA and Ca2+ in isolated mitochondria, indicating it does not directly prevent mitochondrial damage. Furthermore, diazoxide did not prevent respiratory inhibition in cells treated with MMA. Interestingly, we found that the mitochondrial inner membrane potential within intact cells treated with MMA was maintained in part by the reverse activity of ATP synthase (ATP hydrolysis) and that diazoxide prevented the formation of the membrane potential in the presence of MMA, in a manner sensitive to 5-hydroxydecanoate. Furthermore, the effects of diazoxide on cell survival after treatment with MMA were similar to those of ATP synthase inhibitor oligomycin and adenine nucleotide translocator inhibitor atractyloside. These results indicate that diazoxide prevents PC12 cell death promoted by MMA by decreasing mitochondrial ATP hydrolysis. These results uncover new potential neuroprotective effects of mitoK(ATP) agonists under situations in which oxidative phosphorylation is inhibited. (c) 2006 Elsevier Inc. All rights reserved.201116517

    Lactate dehydrogenase activity is inhibited by methylmalonate in vitro

    No full text
    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K-i=3.02 +/- 0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.31454154
    corecore