13 research outputs found

    Failure Processes in Embedded Monolayer Graphene under Axial Compression

    Get PDF
    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained

    Parameters influencing the size of chitosan-TPP nano- and microparticles

    Get PDF
    Chitosan nanoparticles, produced by ionic gelation, are among the most intensely studied nanosystems for drug delivery. However, a lack of inter-laboratory reproducibility and a poor physicochemical understanding of the process of particle formation have been slowing their potential market applications. To address these shortcomings, the current study presents a systematic analysis of the main polymer factors affecting the nanoparticle formation driven by an initial screening using systematic statistical Design of Experiments (DoE). In summary, we found that for a given chitosan to TPP molar ratio, the average hydrodynamic diameter of the particles formed is strongly dependent on the initial chitosan concentration. The degree of acetylation of the chitosan was found to be the second most important factor involved in the system's ability to form particles. Interestingly, viscosimetry studies indicated that the particle formation and the average hydrodynamic diameter of the particles formed were highly dependent on the presence or absence of salts in the medium. In conclusion, we found that by controlling two simple factors of the polymer solution, namely its initial concentration and its solvent environment, it is feasible to control in a reproducible manner the production and characteristics of chitosan particles ranging in size from nano- to micrometres

    Electrically conductive silicon oxycarbide thin films prepared from preceramic polymers

    No full text
    This work focuses on silicon oxycarbide thin film preparation and characterization. The Taguchi method of experimental design was used to optimize the process of film deposition. The prepared ceramic thin films with a thickness of c. 500 nm were characterized concerning their morphology, composition, and electrical properties. The molecular structure of the preceramic polymers used for the preparation of the ceramic thin films as well as the thermomechanical properties of the resulting SiOC significantly influenced the quality of the ceramic films. Thus, an increase in the content of carbon was found beneficial for the preparation of crack-free thin films. The obtained ceramic films exhibited increased electrical conductivity as compared to monolithic SiOC of similar chemical composition. This was shown to correlate with the unique hierarchical microstructure of the SiOC films, which contain large oxygen-depleted particles, mainly consisting of highly graphitized carbon and SiC, homogeneously dispersed in an oxygen-containing amorphous matrix. The matrix was shown to also contain free carbon and to contribute to charge carrier transport between the highly conductive large particles. The ceramic thin films possess electrical conductivities in the range from 5.4 to 8.8 S/cm and may be suitable for implementation in miniaturized piezoresistive strain gauges
    corecore