17 research outputs found

    Radium ion: A possible candidate for measuring atomic parity violation

    Full text link
    Single trapped and laser cooled Radium ion as a possible candidate for measuring the parity violation induced frequency shift has been discussed here. Even though the technique to be used is similar to that proposed by Fortson [1], Radium has its own advantages and disadvantages. The most attractive part of Radium ion as compared to that of Barium ion is its mass which comes along with added complexity of instability as well as other issues which are discussed hereComment: Conference proceedin

    Isotopic variation of parity violation in atomic ytterbium

    Full text link
    We report on measurements of atomic parity violation, made on a chain of ytterbium isotopes with mass numbers A=170, 172, 174, and 176. In the experiment, we optically excite the 6s2 1S0 -> 5d6s 3D1 transition in a region of crossed electric and magnetic fields, and observe the interference between the Stark- and weak-interaction-induced transition amplitudes, by making field reversals that change the handedness of the coordinate system. This allows us to determine the ratio of the weak-interaction-induced electric-dipole (E1) transition moment and the Stark-induced E1 moment. Our measurements, which are at the 0.5% level of accuracy for three of the four isotopes measured, allow a definitive observation of the isotopic variation of the weak-interaction effects in an atom, which is found to be consistent with the prediction of the Standard Model. In addition, our measurements provide information about an additional Z' boson.Comment: 19 pages, 4 figures, 2 table

    Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

    Get PDF
    Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature.Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays).Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties

    Parity Violation in Atomic Physics

    No full text

    Weak Decays of Open and Hidden Top

    No full text

    Electroweak interaction in muonic atoms

    No full text
    The parity non-conserving effective neutral current interaction between charged leptons and nucleons is studied in its implications for atomic physics. Present results on heavy electronic atoms are discussed within the standard electroweak theory and beyond. The new features provided by muonic atoms open the way to the nuclear-spin-dependent parity non-conserving effects. Different observables proposed to study these effects in muonic atoms are reviewed
    corecore