100 research outputs found
Fine-Tuning Translation Kinetics Selection as the Driving Force of Codon Usage Bias in the Hepatitis A Virus Capsid
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness
Scale without Conformal Invariance: Theoretical Foundations
We present the theoretical underpinnings of scale without conformal
invariance in quantum field theory. In light of our results the gradient-flow
interpretation of renormalization-group (RG) flow is challenged, due to deep
connections between scale-invariant theories and recurrent behaviors in the RG.
We show that, on scale-invariant trajectories, there is a redefinition of the
dilatation current that leads to generators of dilatations that generate
dilatations. Finally, we develop a systematic algorithm for the search of
scale-invariant trajectories in perturbation theory.Comment: 18 pages. Added note to make clear that the results of
arXiv:1106.2540 do not imply the existence of unitary theories with scale but
without conformal invariance in perturbation theory in
spacetime dimension
Dark Matter in the Milky Way's Dwarf Spheroidal Satellites
The Milky Way's dwarf spheroidal satellites include the nearest, smallest and
least luminous galaxies known. They also exhibit the largest discrepancies
between dynamical and luminous masses. This article reviews the development of
empirical constraints on the structure and kinematics of dSph stellar
populations and discusses how this phenomenology translates into constraints on
the amount and distribution of dark matter within dSphs. Some implications for
cosmology and the particle nature of dark matter are discussed, and some
topics/questions for future study are identified.Comment: A version with full-resolution figures is available at
http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures;
invited review article to be published in Vol. 5 of the book "Planets, Stars,
and Stellar Systems", published by Springe
Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination
Synonymous but not the same: the causes and consequences of codon bias
Despite their name, synonymous mutations have significant consequences for cellular processes in all taxa. As a result, an understanding of codon bias is central to fields as diverse as molecular evolution and biotechnology. Although recent advances in sequencing and synthetic biology have helped resolve longstanding questions about codon bias, they have also uncovered striking patterns that suggest new hypotheses about protein synthesis. Ongoing work to quantify the dynamics of initiation and elongation is as important for understanding natural synonymous variation as it is for designing transgenes in applied contexts
- …