4 research outputs found

    Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature

    Full text link
    Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assemblies. However, single-molecule techniques to access ultrafast coherences at physiological conditions were not available so far. Here we show by employing femtosecond pulse-shaping techniques that quantum coherences in single organic molecules can be created, probed, and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi-oscillations and control the coherent superposition state in a single molecule, thus performing a basic femtosecond single-qubit operation at room temperature

    On the role of electromagnetic boundary conditions in single molecule fluorescence lifetime studies of dyes embedded in thin films

    Get PDF
    Single molecule fluorescence lifetime studies are generally performed in thin polymer films, where the influence of the interface on the behaviour of fluorescing molecules is not negligible. In order to describe this influence, we investigate annealed films of different thickness. We show that the distribution of fluorescence lifetimes of the embedded dyes is shifted to lower values as the thickness of the film increases. We explain this shift by simple electromagnetic arguments related to the boundary conditions at the interfaces of the polymer film with air and glass, respectively. The conclusion is that extreme care must be taken in order to interpret single molecule data with respect to the true chemical nature of the phenomena

    Visualizing and controlling vibrational wave packets of single molecules

    Get PDF
    The active steering of the pathways taken by chemical reactions and the optimization of energy conversion processes provide striking examples of the coherent control of quantum interference through the use of shaped laser pulses. Experimentally, coherence is usually established by synchronizing a subset of molecules in an ensemble with ultra-short laser pulses. But in complex systems where even chemically identical molecules exist with different conformations and in diverse environments, the synchronized subset will have an intrinsic inhomogeneity that limits the degree of coherent control that can be achieved. A naturaland, indeed, the ultimatesolution to overcoming intrinsic inhomogeneities is the investigation of the behaviour of one molecule at a time. The single-molecule approach has provided useful insights into phenomena as diverse as biomolecular interactions, cellular processes and the dynamics of supercooled liquids and conjugated polymers. Coherent state preparation of single molecules has so far been restricted to cryogenic conditions, whereas at room temperature only incoherent vibrational relaxation pathways have been probed. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a high degree of control, and expect that the approach can be extended to achieve single-molecule coherent control in other complex inhomogeneous systems.Fil: Brinks, Daan. Institut de Ciencies Fotoniques; EspañaFil: Stefani, Fernando Daniel. Institut de Ciencies Fotoniques; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kulzer, Florian. Institut de Ciencies Fotoniques; EspañaFil: Hildner, Richard. Institut de Ciencies Fotoniques; EspañaFil: Taminiau, Tim H.. Institut de Ciencies Fotoniques; EspañaFil: Avlasevich, Yuri. Max Planck Institute for Polymer Research; AlemaniaFil: Müllen, Klaus. Max Planck Institute for Polymer Research; AlemaniaFil: Van Hulst, Niek F.. Institut de Ciencies Fotoniques; España. Institució Catalana de Recerca i Estudis Avancats; Españ
    corecore