290 research outputs found

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    A Female Spider With One Male Palpus

    Get PDF

    Kinematic alignment in total knee arthroplasty

    Get PDF
    Kinematic alignment (KA) is an alternative philosophy for aligning a total knee replacement (TKR) which aims to restore all three kinematic axes of the native knee. Many of the studies on KA have actually described non-KA techniques, which has led to much confusion about what actually fits the definition of KA. Alignment should only be measured using three-dimensional cross-sectional imaging. Many of the studies looking at the influence of implants/limb alignment on total knee arthroplasty outcomes are of limited value because of the use of two-dimensional imaging to measure alignment, potentially leading to inaccuracy. No studies have shown KA to be associated with higher complication rates or with worse implant survival; and the clinical outcomes following KA tend to be at least as good as mechanical alignment. Further high-quality multi-centre randomized controlled trials are needed to establish whether KA provides better function and without adversely impacting implant survival

    Notes on Canadian and Arctic Spiders

    Get PDF

    Spiders in Winter Floods

    Get PDF

    Oviposition in Spiders

    Get PDF

    Cocoons and Young of Coniopteryx Vicina

    Get PDF

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids

    Full text link
    Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil, water and surfactant have been observed experimentally and predicted theoretically by simple models for some time now, their numerical simulation has not been achieved so far. In this work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited for this purpose: the two-dimensional version of this model does indeed exhibit a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS illustrations included. To appear in J. Phys. Cond. Ma

    Breakdown of scale-invariance in the coarsening of phase-separating binary fluids

    Full text link
    We present evidence, based on lattice Boltzmann simulations, to show that the coarsening of the domains in phase separating binary fluids is not a scale-invariant process. Moreover we emphasise that the pathway by which phase separation occurs depends strongly on the relation between diffusive and hydrodynamic time scales.Comment: 4 pages, Latex, 4 eps Figures included. (higher quality Figures can be obtained from [email protected]
    corecore