48 research outputs found

    Cell-scale degradation of peritumoural extracellular matrix fibre network and its role within tissue-scale cancer invasion

    Get PDF
    Local cancer invasion of tissue is a complex, multiscale process which plays an essential role in tumour progression. Occurring over many different temporal and spatial scales, the first stage of invasion is the secretion of matrix degrading enzymes (MDEs) by the cancer cells that consequently degrade the surrounding extracellular matrix (ECM). This process is vital for creating space in which the cancer cells can progress and it is driven by the activities of specific matrix metalloproteinases (MMPs). In this paper, we consider the key role of two MMPs by developing further the novel two-part multiscale model introduced in [33] to better relate at micro-scale the two micro-scale activities that were considered there, namely, the micro-dynamics concerning the continuous rearrangement of the naturally oriented ECM fibres within the bulk of the tumour and MDEs proteolytic micro-dynamics that take place in an appropriate cell-scale neighbourhood of the tumour boundary. Focussing primarily on the activities of the membrane-tethered MT1-MMP and the soluble MMP-2 with the fibrous ECM phase, in this work we investigate the MT1-MMP/MMP-2 cascade and its overall effect on tumour progression. To that end, we will propose a new multiscale modelling framework by considering the degradation of the ECM fibres not only to take place at macro-scale in the bulk of the tumour but also explicitly in the micro-scale neighbourhood of the tumour interface as a consequence of the interactions with molecular fluxes of MDEs that exercise their spatial dynamics at the invasive edge of the tumour

    Dual-tasking and gait in people with Mild Cognitive Impairment. The effect of working memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognition and mobility in older adults are closely associated and they decline together with aging. Studies evaluating associations between cognitive factors and gait performance in people with Mild Cognitive Impairment (MCI) are scarce. In this study, our aim was to determine whether specific cognitive factors have a more identifiable effect on gait velocity during dual-tasking in people with MCI.</p> <p>Methods</p> <p>Fifty-five participants, mean age 77.7 (SD = 5.9), 45% women, with MCI were evaluated for global cognition, working memory, executive function, and attention. Gait Velocity (GV) was measured under a single-task condition (single GV) and under two dual-task conditions: 1) while counting backwards (counting GV), 2) while naming animals (verbal GV). Multivariable linear regression analysis was used to examine associations with an alpha-level of 0.05.</p> <p>Results</p> <p>Participants experienced a reduction in GV while engaging in dual-task challenges (p < 0.005). Low executive function and working memory performances were associated with slow single GV (p = 0.038), slow counting GV (p = 0.017), and slow verbal GV (p = 0.031). After adjustments, working memory was the only cognitive factor which remained significantly associated with a slow GV.</p> <p>Conclusion</p> <p>In older adults with MCI, low working memory performance was associated with slow GV. Dual-task conditions showed the strongest associations with gait slowing. Our findings suggest that cortical control of gait is associated with decline in working memory in people with MCI.</p

    Limited diversity associated with duplicated class II MHC-DRB genes in the red squirrel population in the United Kingdom compared with continental Europe

    Get PDF
    The red squirrel (Sciurus vulgaris) population in the United Kingdom has declined over the last century and is now on the UK endangered species list. This is the result of competition from the eastern grey squirrel (S. carolinensis) which was introduced in the 19th century. However, recent evidence suggests that the rate of population decline is enhanced by squirrelpox disease, caused by a viral infection carried asymptomatically by grey squirrels but to which red squirrels are highly susceptible. Population genetic diversity provides some resilience to rapidly evolving or exotic pathogens. There is currently no data on genetic diversity of extant UK squirrel populations with respect to genes involved in disease resistance. Diversity is highest at loci involved in the immune response including genes clustered within the major histocompatibility complex (MHC). Using the class II DRB locus as a marker for diversity across the MHC region we genotyped 110 red squirrels from locations in the UK and continentalEurope. Twenty four Scvu-DRB alleles at two functional loci; Scvu-DRB1 and Scvu- DRB2, were identified. High levels of diversity were identified at both loci in the continental populations. In contrast, no diversity was observed at the Scvu-DRB2 locus in the mainland UK population while a high level of homozygosity was observed at the Scvu-DRB1 locus. The red squirrel population in the UK appears to lack the extensive MHC diversity associated with continental populations, a feature which may have contributed to their rapid decline

    Calcium mobilization via intracellular ion channels, store organization and mitochondria in smooth muscle

    Get PDF
    In smooth muscle, Ca2+ release from the internal store into the cytoplasm occurs via inositol trisphosphate (IP3R) and ryanodine receptors (RyR). The internal Ca2+ stores containing IP3R and RyR may be arranged as multiple separate compartments with various IP3R and RyR arrangements, or there may be a single structure containing both receptors. The existence of multiple stores is proposed to explain several physiological responses which include the progression of Ca2+ waves, graded Ca2+ release from the store and various local responses and sensitivities. We suggest that, rather than multiple stores, a single luminally-continuous store exists in which Ca2+ is in free diffusional equilibrium throughout. Regulation of Ca2+ release via IP3R and RyR by the local Ca2+ concentration within the stores explains the apparent existence of multiple stores and physiological processes such as graded Ca2+ release and Ca2+ waves. Close positioning of IP3R on the store with mitochondria or with receptors on the plasma membrane creates ‘IP3 junctions’ to generate local responses on the luminally-continuous store

    Surface thermodynamics reconsidered. Derivation of the Gokhshtein relations from the Gibbs potential and a new approach to surface stress

    No full text
    This is the accepted version of a paper subsequently published in the Journal of Solid State Electrochemistry. The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-013-2287-9The terminology and definition of surface tension are discussed. In particular, the surface tension is defined as the partial derivative of the surface excess Gibbs energy with respect to an infinitesimal increment of surface area at constant temperature and pressure. The surface tension is also formulated as the sum of a stress-free component and a stress-containing component. The stress-containing component is defined as the surface stress. Finally, the case of charged surfaces is analyzed, and the Gokhshtein relations are derived from the Gibbs potential in the special case that the electrode/solution interface is ideally polarizable
    corecore