691 research outputs found
Identification of Direct Target Genes Using Joint Sequence and Expression Likelihood with Application to DAF-16
A major challenge in the post-genome era is to reconstruct regulatory networks from the biological knowledge accumulated up to date. The development of tools for identifying direct target genes of transcription factors (TFs) is critical to this endeavor. Given a set of microarray experiments, a probabilistic model called TRANSMODIS has been developed which can infer the direct targets of a TF by integrating sequence motif, gene expression and ChIP-chip data. The performance of TRANSMODIS was first validated on a set of transcription factor perturbation experiments (TFPEs) involving Pho4p, a well studied TF in Saccharomyces cerevisiae. TRANSMODIS removed elements of arbitrariness in manual target gene selection process and produced results that concur with one's intuition. TRANSMODIS was further validated on a genome-wide scale by comparing it with two other methods in Saccharomyces cerevisiae. The usefulness of TRANSMODIS was then demonstrated by applying it to the identification of direct targets of DAF-16, a critical TF regulating ageing in Caenorhabditis elegans. We found that 189 genes were tightly regulated by DAF-16. In addition, DAF-16 has differential preference for motifs when acting as an activator or repressor, which awaits experimental verification. TRANSMODIS is computationally efficient and robust, making it a useful probabilistic framework for finding immediate targets
Six-week high-intensity exercise program for middle-aged patients with knee osteoarthritis: a randomized controlled trial [ISRCTN20244858]
BACKGROUND: Studies on exercise in knee osteoarthritis (OA) have focused on elderly subjects. Subjects in this study were middle-aged with symptomatic and definite radiographic knee osteoarthritis. The aim was to test the effects of a short-term, high-intensity exercise program on self-reported pain, function and quality of life. METHODS: Patients aged 36β65, with OA grade III (Kellgren & Lawrence) were recruited. They had been referred for radiographic examination due to knee pain and had no history of major knee injury. They were randomized to a twice weekly supervised one hour exercise intervention for six weeks, or to a non-intervention control group. Exercise was performed at β₯ 60% of maximum heart rate (HR max). The primary outcome measure was the Knee injury and Osteoarthritis Outcome Score (KOOS). Follow-up occurred at 6 weeks and 6 months. RESULTS: Sixty-one subjects (mean age 56 (SD 6), 51 % women, mean BMI 29.5 (SD 4.8)) were randomly assigned to intervention (n = 30) or control group (n = 31). No significant differences in the KOOS subscales assessing pain, other symptoms, or function in daily life or in sport and recreation were seen at any time point between exercisers and controls. In the exercise group, an improvement was seen at 6 weeks in the KOOS subscale quality of life compared to the control group (mean change 4.0 vs. -0.7, p = 0.05). The difference between groups was still persistent at 6 months (p = 0.02). CONCLUSION: A six-week high-intensive exercise program had no effect on pain or function in middle-aged patients with moderate to severe radiographic knee OA. Some effect was seen on quality of life in the exercise group compared to the control group
Understanding psychiatric institutionalization: a conceptual review
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo
Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Ξlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Ξlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Ξlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Ξlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Ξlgt mutant were associated with only slightly delayed growth in complete medium. However the Ξlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Ξlgt mutant from establishing invasive infection
Dissecting complex transcriptional responses using pathway-level scores based on prior information
<p>Abstract</p> <p>Background</p> <p>The genomewide pattern of changes in mRNA expression measured using DNA microarrays is typically a complex superposition of the response of multiple regulatory pathways to changes in the environment of the cells. The use of prior information, either about the function of the protein encoded by each gene, or about the physical interactions between regulatory factors and the sequences controlling its expression, has emerged as a powerful approach for dissecting complex transcriptional responses.</p> <p>Results</p> <p>We review two different approaches for combining the noisy expression levels of multiple individual genes into robust pathway-level differential expression scores. The first is based on a comparison between the distribution of expression levels of genes within a predefined gene set and those of all other genes in the genome. The second starts from an estimate of the strength of genomewide regulatory network connectivities based on sequence information or direct measurements of protein-DNA interactions, and uses regression analysis to estimate the activity of gene regulatory pathways. The statistical methods used are explained in detail.</p> <p>Conclusion</p> <p>By avoiding the thresholding of individual genes, pathway-level analysis of differential expression based on prior information can be considerably more sensitive to subtle changes in gene expression than gene-level analysis. The methods are technically straightforward and yield results that are easily interpretable, both biologically and statistically.</p
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
The Insulator Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across the Human Genome
Chromatin structure plays an important role in modulating the accessibility of genomic DNA to regulatory proteins in eukaryotic cells. We performed an integrative analysis on dozens of recent datasets generated by deep-sequencing and high-density tiling arrays, and we discovered an array of well-positioned nucleosomes flanking sites occupied by the insulator binding protein CTCF across the human genome. These nucleosomes are highly enriched for the histone variant H2A.Z and 11 histone modifications. The distances between the center positions of the neighboring nucleosomes are largely invariant, and we estimate them to be 185 bp on average. Surprisingly, subsets of nucleosomes that are enriched in different histone modifications vary greatly in the lengths of DNA protected from micrococcal nuclease cleavage (106β164 bp). The nucleosomes enriched in those histone modifications previously implicated to be correlated with active transcription tend to contain less protected DNA, indicating that these modifications are correlated with greater DNA accessibility. Another striking result obtained from our analysis is that nucleosomes flanking CTCF sites are much better positioned than those downstream of transcription start sites, the only genomic feature previously known to position nucleosomes genome-wide. This nucleosome-positioning phenomenon is not observed for other transcriptional factors for which we had genome-wide binding data. We suggest that binding of CTCF provides an anchor point for positioning nucleosomes, and chromatin remodeling is an important component of CTCF function
Helicobacter pylori's Unconventional Role in Health and Disease
The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease
The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery
Legionella pneumophila infects human alveolar macrophages and is responsible for Legionnaireβs disease, a severe form of pneumonia. L. pneumophila encodes more than 300 putative effectors, which are translocated into the host cell via the Dot/Icm type IV secretion system. These effectors highjack the hostβs cellular processes to allow bacterial intracellular growth and replication. Here we adopted a multidisciplinary approach to investigate WipB, a Dot/Icm effector of unknown function. The crystal structure of the N-terminal domain at 1.7βΓ
resolution comprising residues 25 to 344 revealed that WipB harbours a Ser/Thr phosphatase domain related to the eukaryotic phospho-protein phosphatase (PPP) family. The C-terminal domain (residues 365β524) is sufficient to pilot the effector to acidified LAMP1-positive lysosomal compartments, where WipB interacts with the v-ATPase and the associated LAMTOR1 phosphoprotein, key components of the lysosomal nutrient sensing (LYNUS) apparatus that controls the mammalian target of rapamycin (mTORC1) kinase complex at the lysosomal surface. We propose that WipB is a lysosome-targeted phosphatase that modulates cellular nutrient sensing and the control of energy metabolism during Legionella infection
- β¦