33 research outputs found

    Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application

    Get PDF
    Recently, two studies using ipilimumab, an anti-CTLA-4 monoclonal antibody (mab) demonstrated improvements in overall survival in the treatment of advanced melanoma. These studies utilized two different schedules of treatment in different patient categories (first and second line of treatment). However, the results were quite similar despite of different dosage used and the combination with dacarbazine in the first line treatment. We reviewed the result of randomized phase II-III clinical studies testing anti-CTLA-4 antibodies (ipilimumab and tremelimumab) for the treatment of melanoma to focus on practical or scientific questions related to the broad utilization of these products in the clinics. These analyses raised some considerations about the future of these compounds, their potential application, dosage, the importance of the schedule (induction/manteinance compared to induction alone) and their role as adjuvants. Anti-CTLA-4 antibody therapy represents the start of a new era in the treatment of advanced melanoma but we are on the steep slope of the learning curve toward the optimization of their utilization either a single agents or in combination

    Site-selective protein-modification chemistry for basic biology and drug development.

    Get PDF
    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239

    Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-α and histamine whereas normal keratinocytes undergo cytolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-α are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-α and histamine on cervical carcinoma cell lines was studied.</p> <p>Methods and results</p> <p>TNF-α alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-α and histamine in combination showed no additional effect over that by TNF-α alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-α-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-α and histamine. In comparison, TNF-α or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR) I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-α immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes.</p> <p>Conclusion</p> <p>SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-α and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-α could even enhance carcinoma cell migration.</p

    Systematic review of beliefs, behaviours and influencing factors associated with disclosure of a mental health problem in the workplace

    Get PDF
    Stigma and discrimination present an important barrier to finding and keeping work for individuals with a mental health problem. This paper reviews evidence on: 1) employment-related disclosure beliefs and behaviours of people with a mental health problem; 2) factors associated with the disclosure of a mental health problem in the employment setting; 3) whether employers are less likely to hire applicants who disclose a mental health problem; and 4) factors influencing employers' hiring beliefs and behaviours towards job applicants with a mental health problem

    Cytidine monophosphate N-acetylneuraminic acid synthetase enhances invasion of human triple-negative breast cancer cells

    No full text
    Elizabeth M O&rsquo;Day,1,2 Greg E Idos,3 Collin Hill,4 Joan W Chen,5 Gerhard Wagner1 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; 2Olaris Therapeutics, Cambridge, MA 02138, USA; 3Division of Gastroenterology and Liver Disease, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; 4PerkinElmer, Waltham, MA 02451, USA; 5Rancho Biosciences, San Diego, CA 92127, USA Background: Cancer cells have altered bioenergetics, which contributes to their ability to proliferate, survive in unusual microenvironments, and invade other tissues. Changes in glucose metabolism can have pleomorphic effects on tumor cells. Methods: To investigate potential mechanisms responsible for the increased malignancy associated with altered glucose metabolism, we used an unbiased nuclear magnetic resonance spectroscopy screening method to identify glucose metabolites differentially produced in a highly malignant human triple-negative breast cancer (TNBC) cell line (BPLER) and a less malignant isogenic TNBC cell line (HMLER). Results: N-acetylneuraminic acid (Neu5Ac), the predominant sialic acid derivative in mammalian cells, which forms the terminal sugar on mucinous cell surface glycoproteins, was the major glucose metabolite that differed. Neu5Ac was ~7-fold more abundant in BPLER than HMLER. Loss of Neu5Ac by enzymatic removal or siRNA knockdown of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS), which activates cellular sialic acids for glycoprotein conjugation, had no significant effect on cell proliferation, but decreased the ability of BPLER to invade through a basement membrane. Conversely, overexpressing CMAS in HMLER increased invasivity. TNBCs in The Cancer Genome Atlas also had significantly more CMAS copy number variations and higher mRNA expression than non-TNBC, which have a better prognosis. CMAS knockdown in BPLER ex vivo blocked xenograft formation in mice. Conclusion: Neu5Ac is selectively highly enriched in aggressive TNBC, and CMAS, the enzyme required for sialylation, may play an important role in TNBC tumor formation and invasivity. Keywords: triple-negative breast cancer, metabolism, invasion, cytidine monophosphate N-acetylneuraminic acid, sialic acid, NMR spectroscopy, metabolomic

    Nanobodies raised against monomeric α-synuclein distinguish between fibrils at different maturation stages.

    No full text
    Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation
    corecore