31 research outputs found

    Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates

    Get PDF
    Interactions between an organism and its environment can significantly influence phenotypic evolution. A first step toward understanding this process is to characterize phenotypic diversity within and between populations. We explored the phenotypic variation in stress sensitivity and genomic expression in a large panel of Saccharomyces strains collected from diverse environments. We measured the sensitivity of 52 strains to 14 environmental conditions, compared genomic expression in 18 strains, and identified gene copy-number variations in six of these isolates. Our results demonstrate a large degree of phenotypic variation in stress sensitivity and gene expression. Analysis of these datasets reveals relationships between strains from similar niches, suggests common and unique features of yeast habitats, and implicates genes whose variable expression is linked to stress resistance. Using a simple metric to suggest cases of selection, we found that strains collected from oak exudates are phenotypically more similar than expected based on their genetic diversity, while sake and vineyard isolates display more diverse phenotypes than expected under a neutral model. We also show that the laboratory strain S288c is phenotypically distinct from all of the other strains studied here, in terms of stress sensitivity, gene expression, Ty copy number, mitochondrial content, and gene-dosage control. These results highlight the value of understanding the genetic basis of phenotypic variation and raise caution about using laboratory strains for comparative genomics

    Dietary tissue cadmium accumulation in an amazonian teleost (Tambaqui, Colossoma macropomum Cuvier, 1818)

    Get PDF
    Understanding the effects of metal contamination in the Amazon basin is important because of the potential impact on this region of high biodiversity. In addition, the significance of fish as the primary source of protein for the local human population (living either alongside the Amazon River or in the city of Manaus) highlights the need for information on the metal transfer through the food chain. Bioaccumulation of metals in fish can occur at significant rates through the dietary route, without necessarily resulting in death of the organism. The goal of this work was to expose an economic relevant species from the Amazon basin (tambaqui, Colossoma macropomum) to dietary cadmium (Cd) at concentrations of 0, 50, 100, 200, and 400 µg.g-1 dry food. Fish were sampled on days 15, 30, and 45 of the feeding trials. Tissues were collected for analysis of Cd concentration using graphite furnace atomic absorption spectrophotometry. Cd accumulation in the tissues occurred in the following order: kidney > liver > gills > muscle. Relative to other freshwater fish (e.g., rainbow trout, tilapia), tambaqui accumulated remarkably high levels of Cd in their tissues. Although Cd is known to affect Ca2+ homeostasis, no mortality or growth impairment occurred during feeding trials

    Polymers containing disulfide, tetrasulfide, diselenide and ditelluride linkages in the main chain

    No full text
    corecore