40 research outputs found

    Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a ΔhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.4±0.5 µM−1 s−1), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the ΔhsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 Å revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design

    Building capacity for evidence informed decision making in public health: a case study of organizational change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Core competencies for public health in Canada require proficiency in evidence informed decision making (EIDM). However, decision makers often lack access to information, many workers lack knowledge and skills to conduct systematic literature reviews, and public health settings typically lack infrastructure to support EIDM activities. This research was conducted to explore and describe critical factors and dynamics in the early implementation of one public health unit's strategic initiative to develop capacity to make EIDM standard practice.</p> <p>Methods</p> <p>This qualitative case study was conducted in one public health unit in Ontario, Canada between 2008 and 2010. In-depth information was gathered from two sets of semi-structured interviews and focus groups (n = 27) with 70 members of the health unit, and through a review of 137 documents. Thematic analysis was used to code the key informant and document data.</p> <p>Results</p> <p>The critical factors and dynamics for building EIDM capacity at an organizational level included: clear vision and strong leadership, workforce and skills development, ability to access research (library services), fiscal investments, acquisition and development of technological resources, a knowledge management strategy, effective communication, a receptive organizational culture, and a focus on change management.</p> <p>Conclusion</p> <p>With leadership, planning, commitment and substantial investments, a public health department has made significant progress, within the first two years of a 10-year initiative, towards achieving its goal of becoming an evidence informed decision making organization.</p

    Answer to May 2016 Photo Quiz

    No full text

    Attritional Extensor Tendon Rupture in a Patient with Phialophora Verrucosa

    No full text

    TB or Not TB? The Granuloma Is the Question…

    No full text

    Mycobacterial antigens accumulation in foamy macrophages in murine pulmonary tuberculosis lesions: association with necrosis and cavities

    Get PDF
    Understanding mechanisms of cavitation in tuberculosis (TB) is the missing link that could advance the field towards better control of the infection. Descriptions of human TB suggest that postprimary TB begins as lipid pneumonia of foamy macrophages that undergoes caseating necrosis and fragmentation to produce cavities. This study aimed to investigate the various mycobacterial antigens accumulating in foamy macrophages and their relation to tissue destruction and necrosis. Pulmonary tissues from mice with slowly progressive TB were studied for histopathology, acid‐fast bacilli (AFB) and presence of mycobacterial antigens. Digital quantification using Aperio ImageScope was done. Until week 12 postinfection, mice were healthy, and lesions were small with scarce AFB and mycobacterial antigens. Colony‐forming units (CFUs) increased exponentially. At week 16‐33, mice were sick, macrophages attained foamy appearance with an increase in antigens (P 20‐fold increase in mycobacterial antigens was observed with only less than one log increase in CFUs and sevenfold increase in AFB. Secreted antigens were significantly (P < .05) higher compared to cell‐wall antigens throughout infection. Focal areas of necrosis were associated with an approximately 40‐fold increase in antigen MPT46, functionally active thioredoxin, and a significant increase in all secreted antigens. In conclusion, mycobacterial antigens accumulate in the foamy macrophages in TB lesions during slowly progressive murine pulmonary TB. Secreted antigens and MPT46 correlated with necrosis, thereby implying that they might trigger the formation of cavities
    corecore