1,375 research outputs found

    Mechanisms of oral tolerance revisited

    Get PDF
    Oral tolerance induction is thought to depend on special antigen presenting cells in the gut. A new report in the previous issue of Arthritis Research & Therapy supports this idea by demonstrating that indoleamine 2,3-dioxygenase-expressing dendritic cells in Peyer's patches from orally tolerized mice suppress T-cell responses via the generation of CD4+CD25+ regulatory T cells. This finding provides novel input into the mechanisms of oral tolerance that could further facilitate its use for the treatment of autoimmunity and chronic inflammatory reactions

    Nutritional considerations for gender-diverse people: a qualitative mini review

    Get PDF
    Dietitians working with gender-diverse people may require different skills and knowledge than those caring for cisgender men and women, as indicated by a growing body of literature that highlights gender-diverse people's unique experiences with and relationships to nutrition and eating behaviors. To provide insight into how dietitians can best serve this population, this mini review identifies and summarizes qualitative studies that investigate gender-diverse people's lived experiences and perspectives regarding nutrition, eating disorders, and access to eating-related healthcare services. Fourteen studies examining nutrition or eating behaviors among gender-diverse samples were selected through a systematic search and screening process: 11 focused on disordered eating or eating disorders and the remaining three focused on nutritional needs, nutritional knowledge, and food insecurity. Extracted themes included: using dietary restriction to suppress secondary sex characteristics or conform to societal norms; the impact of gender-affirming care on disordered eating; negative experiences with, and beliefs about, nutrition and eating disorders healthcare services; and suggestions for clinicians. Recommendations discuss the need for increased trans literacy among clinicians, the creation of safe spaces for gender-diverse people with eating disorders, and the importance of dual competencies in eating disorders treatment and gender-affirming care

    Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)

    Get PDF
    The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT). Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard. In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT. The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include

    Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells

    Get PDF
    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering

    In Vivo Serial MR Imaging of Magnetically Labeled Endothelial Progenitor Cells Homing to the Endothelium Injured Artery in Mice

    Get PDF
    Background: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs) play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. Methodology/Principal Findings: The left carotid common artery (LCCA) was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs). EPCs labeling was carried out in vitro using Fe2O3-poly-L-lysine (Fe2O3-PLL). In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T2WI. Larger MR signal voids of vessel wall on T2WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015). Quantitative analyses of vessel wall areas on T2WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p,0.05). Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. Conclusions/Significance: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPC

    Expression of ZIC family genes in meningiomas and other brain tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zic zinc finger proteins are present in the developing rodent meninges and are required for cell proliferation and differentiation of meningeal progenitors. Although human <it>ZIC </it>genes are known to be molecular markers for medulloblastomas, their expression in meningioma has not been addressed to date.</p> <p>Methods</p> <p>We examined the mRNA and protein expression of human <it>ZIC1</it>, <it>ZIC2</it>, <it>ZIC3</it>, <it>ZIC4 </it>and <it>ZIC5 </it>genes in meningiomas in comparison to other brain tumors, using RT-PCR, analysis of published microarray data, and immunostaining.</p> <p>Results</p> <p><it>ZIC1</it>, <it>ZIC2 </it>and <it>ZIC5 </it>transcript levels in meningiomas were higher than those in whole brain or normal dura mater, whereas all five <it>ZIC </it>genes were abundantly expressed in medulloblastomas. The expression level of <it>ZIC1 </it>in public microarray data was greater in meningiomas classified as World Health Organization Grade II (atypical) than those classified as Grade I (benign). Immunoscreening using anti-ZIC antibodies revealed that 23 out of 23 meningioma cases were ZIC1/2/3/5-immunopositive. By comparison, nuclear staining by the anti-ZIC4 antibody was not observed in any meningioma case, but was strongly detected in all four medulloblastomas. ZIC-positive meningiomas included meningothelial, fibrous, transitional, and psammomatous histological subtypes. In normal meninges, ZIC-like immunoreactivities were detected in vimentin-expressing arachnoid cells both in human and mouse.</p> <p>Conclusions</p> <p>ZIC1, ZIC2, and ZIC5 are novel molecular markers for meningiomas whereas <it>ZIC4 </it>expression is highly selective for medulloblastomas. The pattern of <it>ZIC </it>expression in both of these tumor types may reflect the properties of the tissues from which the tumors are derived.</p
    corecore